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Abstract— Feature-based Simultaneous Localization and Map
building (SLAM) approaches require a robust method to extract
position invariant landmarks from the surrounding environment.
2D laser range finders are currently one of the most common
sensors used to obtain environmental information for mobile
robot navigation due to their reliability, accuracy and low
cost. However, the 2D laser scan data only give very limited
information, making it difficult to extract meaningful features
particularly in unstructured environments. The most important
steps to extract features are segmentation and noise reduction.
Scale space and adaptive smoothing are two common techniques
within the vision community. They are used to remove high
frequency noise and represent image data in multi-scale spaces.
They allow for an easier segmentation of images and the
extraction of features in the appropriate scale. In this paper, a
modified adaptive smoothing algorithm is proposed and applied
to laser range data within a modified scale space framework.
This algorithm smoothes range data and segments it at the same
time by translating a line model mask over the range data.
Lines can be extracted from the segments by using a standard
fitting algorithm.

Index terms—Feature extraction, scale space, adaptive smooth-
ing, simultaneous localization and map building.

I. INTRODUCTION

The localization of outdoor robotic vehicles in unknown
environment is still a major problem to be solved for their
successful deployment. Hence the current interest on the Si-
multaneous Localization And Map building (SLAM) approach
as a solution was firstly introduced in [1] and demonstrated
mathematically in [2]. Today efforts are concentrated on
feature extraction, data association and the reduction of the
computing complexities [3], [4] in the SLAM approach. There
is much work on data association such as Joint Probabilistic
Data Association (JPDA) and Multiple Hypothesis Tracking
(MHT) [5], [6]. However, there are fewer efforts on feature
extraction from sensor data. Due to its reliability, low cost and
accuracy, the most common sensor used is the 2D laser range
finder (also known as LADAR) despite its low resolution and
limited field of view (a single line). The 2D LADAR range
scan data available do not have sufficient information in terms
of resolution, field of view and data rates, which together
with data uncertainty make it difficult to extract features in
the environment. Moreover, if moving in natural environments,
feature recognition is very difficult.

In the feature-based SLAM, features need to be position
invariant landmarks used to build a map and to update the robot

location. Once pose invariant features are extracted from the
environment, the robot location and map uncertainty will be
reduced. In order to extract features from laser sensor data, the
first step is to segment the whole laser scan into several groups
of data, then features can be extracted from each segment. In
previous work, segmentation was mainly achieved using the
split-and-merge algorithm, which splits data into two segments
according to the Mahalanobis [7], [8]. In [9], the multi-scale
space representation used by the vision community [10], [11],
[12], has been applied to laser range data called in an approach
curvature scale space. However, because this approach is not
able to determine the edge points and segment data, it can
only be applied after the laser scan has been segmented into
homogeneous groups. Furthermore, it will be shown that the
Gaussian mask used in image processing does not render good
results for range data.

This paper presents a pose invariant feature extraction ap-
proach applied to LADAR data in order to attain an efficient
understanding of the data available. In this paper, a new
adaptive smoothing algorithm is proposed to represent laser
range data in multi-scale space and segment it at the same
time. This algorithm employs a line model mask to smooth
range data and preserves the discontinuities at different scales.

The paper is organized as follows. Section II gives a short
introduction to scale space theory and the adaptive smoothing
algorithm. Section III presents the proposed adaptive smooth-
ing algorithm developed for LADAR data, which differs from
those used for vision application. Section IV demonstrates how
the LADAR data can be reliably segmented in a truly pose
invariant manner. Section V shows how the modified scale
space method can be applied to navigation problems, as lines
are extracted from the segments. The results shown are taken
from real semi-structured environment based LADAR data.

II. SCALE SPACE THEORY

Scale space theory is a framework for early visual oper-
ations, which has been developed and mainly used by the
vision community to handle the multi-scale nature of real-
world objects. An inherent property of real-world objects is
that they only exist as meaningful entities over certain ranges
of scale [13]. A simple example is the concept of a branch
of a tree, which makes sense only at a view point scale
form from a few centimeters to at most a few meters. Thus,
the need for multi-scale representation arises when designing
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Fig. 1. 1-D signal in multi-scale space representation.

methods for automatically extracting information from real-
world measurements should be. Since it is not obvious in
advance what the proper scales, the only reasonable approach
is to represent at multiple scales and then determine the best
one.

Multi-scale signal representation may be achieved by im-
parting smoothing at different levels of scale. The crucial re-
quirement for the multi-scale representation is that structures at
coarse scales should constitute simplifications of correspond-
ing structures at finer scales [10]. The finest scale corresponds
to the finest level of detail and the coarsest scale corresponds
to highest level of smoothing desired. At coarse scale, the
significant features of the signal must still remain and no
new features should be created during the smoothing process.
Figure 1 shows the result of applying Gaussian smoothing to a
one-dimensional signal to build up a multi-scale representation.
Notice that no new local extrema were created in coarse scales
and only significant local extrema will persist in coarse scales.

In the vision literature, the common way of constructing the
scale space representation is to smooth the image data with a
Gaussian kernel [10], [11]. The Gaussian kernel is a very well
known low-pass filter, which will remove high frequency noise
from the image data. By convolving the original image I0(x, y)
with a Gaussian mask G(x, y) with different variances t, the
multi-scale representation will be constructed.

I(x, y, t) = I0(x, y) ∗ G(x, y, t) (1)

For a given 2D laser scan, the data is a range series with
different bearing angles. If the bearing angle was used as the
index, the 2D laser scan can be considered as a 1D signal.
A corresponding 1D Gaussian mask has been used to smooth
range data in [9], and a 1D averaging mask was used in [12].

S(x) =
1
N

1∑
i=−1

S(x + i)w(x + i) (2)

with

N =
1∑

i=−1

w(x + i) (3)
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Fig. 2. A 2D laser range scan was smoothed by a Gaussian mask with
variance 1. The green line is the raw range data from the laser sensor and the
blue line is the smoothed range data.

Where S represents the 1D range signal, x is the index and
i is the offset to the center pixel, and w is the weight of the
Gaussian mask or averaging mask.

For 2D image data, each pixel value is assumed to follow
a Gaussian distribution. It is therefore reasonable to convolve
the pixel values with the Gaussian mask in order to ‘blur’ the
image and remove detail and noise. However for 1D range
signals, the range value of each scan point is related to its
neighboring scan points according to the surface shape and the
bearing angle. If the Gaussian mask or averaging mask is used
to smooth 1D range data, the smoothed segment will tend to
become circular as in figure 2. This can be particularly noticed
at the corner region with coordinate(-5,30). This will cause the
original shape of the environment to be changed, which will
contradicting the Scale Space theory. The Gaussian mask and
averaging mask are therefore not suitable for smoothing range
data. A new line model smoothing mask that can smooth 1D
range data and retain the original shape will be introduced in
section III.

The smoothing operation can effectively remove detail and
noise but it can not detect the discontinuities in the range data.
The discontinuities are very important for segmentation and
can be used to determine the physical boundaries of objects.
Adaptive smoothing methods should be used to smooth range
data in the same segment and determine the boundaries of each
segment.

A. Adaptive Smoothing

The general idea behind adaptive smoothing is to apply a
versatile operator which adapts itself to the local topology of
the data to smooth. This filter can smooth the data everywhere,
even across discontinuities. The weights of the convolution
mask w(x) can be computed by a decreasing function f(d(x))
such that f(0) = 1 and f(d(x)) → 0 as d(x) increases, where
d(x) represents the amount of discontinuity at point x. In
[12], it has been suggested that d(x) should depend on the
magnitude of the derivative at that point.

w(x) = f(d(x)) = f(S
′
(x)) = e−

S
′
(x)

2

2k2 (4)



Where S
′
(x) is the derivative of S(x) and k is a parameter,

which determines the magnitude of the derivative at that edge
point to be preserved.

After choosing the line model smoothing mask for 1D laser
range data, the discontinuity d(x) can be calculated by the
Mahalanobis distance of the line model fitting, which will be
shown in section III.

B. Multi-Scale Space Representation

The purpose of the adaptive smoothing algorithm is not
only to determine the discontinuities of the signal but also
construct a representation with different degrees of detail. The
multi-scale space representation of the original signal will
be a one-parameter family of derived signals, where the one
parameter will control the scale of the signal. By using an
adaptive smoothing algorithm, there can be two scale space
representations for the original signal. The first approach,
which is similar to Gaussian scale-space, is to fix k in equation
4, and then use the number of iterations to serve as scale. The
other approach is to use k as the scale while fixing the number
of iterations.

Scale space theory has been applied successfully in image
data. For SLAM, a 2D laser range finder is used here to obtain
information from the surrounding environment. It would be
useful to extract features from these range data. Until now,
Scale space theory has attracted little attention when applied
to laser range data [9], [12]. By examining the problem of
Gaussian mask smoothing on laser range data, as discussed
above, a new segmentation and feature extraction algorithm
based on the multi-scale space and adaptive smoothing theory
will be introduced in this paper.

III. ADAPTIVE LINE SMOOTHING

From figure 2, it has been shown that the 1D laser range
data tends to become circular after smoothed by the Gaussian
mask. Obviously the original shape of the laser scan has
been changed. A new smoothing mask is therefore required
to smooth the 1D laser range data in multi-scale space. Due to
the complexity of the real environment, it’s impossible to use
one smoothing mask for every shape of the environment. In
many semi-structured outdoor environments, a useful objective
can be to segment laser range data and extract features such
as line segments. It is noted here that a smoothing mask can
easily be formulated for any chosen surface representation
within an environment using the method which follows. For
demonstration purposes here, a method of smoothing only line
segments within a laser scan, while leaving all other parts of
the scan in tact can successfully meet our requirements to
segment laser data and extract lines. A modified scale space
approach, based on a line model mask with weights calculated
from the line fitting errors, is presented.

A. Modified Line Model

In [14], a recursive line model estimator is initialized using
the first two range values to predict the third range value. Then
the measurement will be used to update the state, forming an
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Fig. 3. Modified line models.

extracted line. In this model, it’s assumed that the range data
are obtained sequentially while the laser sensor is scanning.
Commonly used SICK LMS laser sensors often produce a
whole scan data batch at a time. Therefore any two range
values can be used to predict the third range value in figure
3. di, di+1 and di+2 are the distance between the robot and
three consecutive scan points within a planar surface. γ is the
constant incrementing angle of the laser sensor.

Based on any 3 point combinations shown in figure 3,
there will be three line models. Often, LADAR scan points
are assumed to have only measurement noise in the range
direction [7]. The estimated values of these three range points
are required to minimize the sum of square errors Min(∆d1

2+
∆d2

2+∆d3
2) in the range direction, where ∆d is the distance

between the scan point and predicted point. This can be
achieved by using Kalman Filter based on the modified line
model. The state vector to be estimated are the range values
of these three points. 

x1

x2

x3


 =


 di

di+1

di+2


 (5)

The prediction model can be shown to be [14]:

d̂i =
di+2di+1

2di+2cosγ − di+1
(6)

d̂i+1 =
2didi+2cosγ

didi+2
(7)

d̂i+2 =
didi+1

2dicosγ − di+1
(8)

where d̂i, d̂i+1 and d̂i+2 are the distances between the robot
and the predicted points.

Obviously these prediction equations are nonlinear, so that
the Extended Kalman Filter (EKF) or Unscented Kalman Filter
(UKF) [15] are required to calculate the predicted state vector.

The observation model is:
z1

z2

z3


 =


1 0 0

0 1 0
0 0 1





x1

x2

x3


 (9)

And the three range values are the measurements, and each
point has the same measurement noise, which is assumed to
be Gaussian and independent of the target reflectivity. This has



been shown to be a reasonable assumption in TOF LADARs
[16].

By applying a Kalman filter to update the state in equation
5, the innovation v and innovation variance S can be used to
calculate the Mahalanobis distance D.

D = vS−1vT (10)

The innovation v(k +1) is the difference between predicted
observation and measurement, which is a random variable with
Gaussian distribution. The Mahalanobis distance D will be
a random variable following the χ2 distribution, which will
reflect whether the three range points should lie in one straight
line with a certain probability. In the adaptive smoothing step,
this property will be used to calculate the weight of the
smoothing mask.

B. Smoothing Mask Weight

In figure 3, a modified line model is used to smooth three
range points by assuming they may lie in the same straight line.
The estimated range values can be calculated from a Kalman
filter to minimize the total square errors in the range direction.
This modified line model can be considered as a smoothing
mask similar in nature to the Gaussian mask for image data,
but does not make range scan become circular.

In order to construct the smoothing mask, the weight for
each estimated range value must be determined. In the line
model, the Mahalanobis distance has been calculated from the
Kalman filter. This distance actually indicates how these three
range points can be fitted by a straight line. If this distance
becomes large, it is less plausible to fit a straight line through
these three range points. It can be concluded that these three
range points may not lie in one line and the estimated range
values are less trust worthy.

To apply this to the adaptive smoothing algorithm, the
weights of the smoothing mask should be calculated by a
decreasing function depending on the discontinuity in equation
4. In the line model, the innovation v is the difference between
the predicted range value and the measured value, which
reflects the discontinuity in the laser segment. So according
to equation 4 and 10, the weight of the line mask can be
calculated as:

w = e−
vvT

2s = e−
D
2 (11)

Where D is the Mahalanobis distance.
According to the adaptive smoothing algorithm in multi-

scale space, the modified line model mask is shifting from the
first scan point to the last scan point. Figure 4 shows how the
modified line model mask smooths through the line segment.
For each scan point such as C in figure 4, it will have three
estimates C1, C2 and C3 by its neighboring scan points A,
B, D and E. Each estimate has a weight calculated from
equation 11. The observation will has a weight to make the
total weight to be unity. The final range value will be the sum
of the estimated values and observation multiplying with the
corresponding weights.
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Fig. 4. For each scan point, it has three estimates by its neighbors when the
modified line model mask is shifting through the whole scan.

Ĉ =
wC ∗ C +

3∑
i=1

(wCi ∗ Ci)

wC +
3∑

i=1

wCi

(12)

Since the weight is a decreasing function depending on
the Mahalanobis distance, it will adapt itself to the local
topology of the input range data. The weight for the line
fitting across the boundary of different segments will be small,
the estimated range value will have little effect on the final
estimated value. Therefore this smoothing operation can cross
different segments and preserve the discontinuities. This will
be demonstrated with real LADAR range data in the next
section.

C. Multi-Scale Space Representation

Two forms of “scale” are used to represent data in the vision
literature. The first representation is to fix the variance of the
mask and use the number of iterations as a scale variable. This
means that better output data can be obtained by applying
the adaptive smoothing mask several times. In [12], it has
been shown that the input data will have little change after
20 iterations of smoothing. In figure 5, a laser range scan
with a line segment and non-line segment scan points has
been smoothed once by the adaptive line smoothing algorithm.
In figure 6, the same laser range scan has been smoothed
recursively 20 times. It can be seen that the line segment
becomes smoother when increasing the number of iterations
but the non-line segment scan points has little change, which
is the required result.

The second representation is to fix the number of iterations
and use the variance of the mask as the scale variable. With
a larger variance, the smoothed data will be at coarse scale.
Most of the noise will have been removed and only the main
structures will remain. In this paper, the modified line model
was used as smoothing mask. The variance of this mask can be
tuned by choosing different process noise values for the line
model. By choosing a large line model noise, which means
large variance of smoothing mask, the result signal will be in
coarse scale.
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Fig. 5. A laser range scan was smoothed by the adaptive smoothing mask.
The number of smoothing iteration is 1.
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Fig. 6. A laser range scan was smoothed by the adaptive smoothing mask.
The number of smoothing iteration is 20.

IV. SEGMENTATION

From the Kalman filter with the modified line model, the
innovation V is the difference between the predicted range
value and the measured value from the laser sensor, which
is assumed to follow a Gaussian distribution [16]. Therefore,
the innovation is a Gaussian random variable, and according
to equation 10, the Mahalanobis D will be a random variable
following the χ2 distribution [5]. As we know, the Mahalanobis
distance indicates the modified line model fidelity. So it’s a
good measure for segmentation. A threshold is normally set
to distinguish line segments and non-line segments. If the
Mahalanobis distance is less than 9, it has a probability of
99.7% that these three range points may lie on a straight line;
otherwise these three scan points are not in one line segment
and a new segment will start from that point.

The segmentation for a real indoor laser scan has been done
by using different line model variance and iteration number. In
figure 7, an indoor laser scan was smoothed by the modified
line model once and the process model noise for the Kalman
filter was set to zero. That means the modified line model is
assumed to be perfect. After smoothing, the laser scan was
segmented based on the Mahalanobis distance for each scan
point calculated from the Kalman filter. The triangle in the
figure is the robot and the blue lines are the smoothed laser
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Fig. 7. Segmentation after one iteration with process noise equal to zero.
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Fig. 8. Segmentation after one iterations with process noise equal to one.

scan from the surrounding environment. The red star points
indicate the edge points, which will be used to segment the
whole scan. From figure 7, it can be seen that the filter is
very “strict” to divide some desired line segments into more
smaller line segments. This is due to the zero process model
noise. When the process model noise is smaller, the filter will
be more “strict”. So the laser scan with higher measurement
noise will be easily segments into more small line segments.

In figure 8, a very high process model noise of unity
was chosen. The obvious difference with figure 7 is that the
edge points reduce a lot. The whole laser scan was roughly
segmented into several parts and many dominant edge points
disappeared. But for each part, it can still be segmented into
several smaller line segments. Due to the high process model
noise, the filter is more flexible to stand for small changes in
line segments.

After that, the iterative smoothing will show the effects on
segmentation. In figure 9, the laser scan was smoothed by
the Kalman filter with the same process model noise equal to
zero as the figure 7. Except that, it has been smoothed with
30 iterations and then segmented according the Mahalanobis
distance calculated in the last iteration. The same effect as in
figure 8 has occurred, in that the number of edge points was
reduced. However, the dominant edge points are all preserved
and the laser scan becomes smoother. The missing edge points
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Fig. 9. Segmentation after 30 iterations with a zero process noise.

are mostly caused by the measurement noise. After smoothed
for 30 iterations, the noise for laser scan has been largely
reduced. Therefore, the filter can easily determine the true edge
points from the laser scan.

From figure 9, it is clear to see that the segmentation
becomes better. As discussed above, the measurement noise
in laser scans will be remove as the number of iterations
increases. So the Mahalanobis distance of the Kalman filter
for scan points in the line segments will be largely reduced
and the distance for non-line segment points should still be
large as before. In figure 10, the Mahalanobis distance for
each scan point was shown. The blue stars denote the distance
calculated when the laser scan was smoothed once. And the red
diamonds denote the distance calculated when the laser scan
was smoothed for 30 times. The X axis is the index of scan
points and the Y axis is the Mahalanobis distance, which has
been converted to the logarithm of the true distance. It’s clear
to see that most of the distances has been reduced a lot after
smoothed for 30 times, which correspond to the scan points
in the line segments. There are still several scan points, whose
Mahalanobis distance is approximately the same as before. In
effect, these points correspond to the edge points in the laser
scan. Therefore, it’s easier now to distinguish the edge points
according to the Mahalanobis distance without too much noise.

V. LINE SEGMENT FITTING

After segmentation, extraction of geometric features from
segments such as lines is needed. A standard regression method
is mostly used to find the best line in polar coordinates as
features. For laser range data,“best” is with respect to squared
measurement errors in range direction. If the fitting error
is beyond a predefined threshold, the extracted line will be
ignored. The line fitting method has been specifically discussed
in [7], [17]. The extracted features and their covariance matrix
can also be determined, which is essential in feature-based
SLAM approaches. In figure 11, an indoor laser range scan
was segmented by using adaptive line model smoothing and
extended line segments and their intersections (shown as
crosses) have been extracted by using a line fitting algorithm.
In figure 12, this algorithm has been applied to an outdoor laser
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Fig. 10. The Mahalanobis distances of the modified line smoothing when
the smoothing mask is shifting from the first three scan points to the last three
scan points. The blue stars denote the Mahalanobis distances when the number
of iteration is one. The red diamonds denote the Mahalanobis distances when
the number of iteration is 30.
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Fig. 11. Lines extracted from an indoor laser range scan after adaptive
smoothing and segmentation. The lines or the intersection points of lines can
be used as features for SLAM.

scan and line segments and their intersections were extracted.

VI. CONCLUSIONS

A robust feature extraction algorithm is required for feature-
based SLAM approach. The most important steps for reliable
feature extraction from 2D laser range data are to segment
laser scans and reduce noise. The proposed modified adaptive
smoothing algorithm based on scale space theory shows several
attractive properties. Based on scale space theory, laser data
is represented in multi-scale space. This representation is
sufficiently robust to noise inherently present in the laser scans.
Instead of the Gaussian mask used in image processing, the
modified line model mask is used to smooth only line segments
that will be finally extracted as features. This mask will avoid
the problem of making laser range segments become circular
caused by the Gaussian mask. Because the weights of the line
model mask are calculated adaptively, this adaptive smoothing
algorithm can preserve the discontinuities and segment laser
scans during smoothing operations.

This adaptive line-model smoothing algorithm requires the
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Fig. 12. An outdoor laser range scan has been smoothed and segmented by
the adaptive smoothing algorithm. Lines were extracted and the intersection
points of lines are used as features.

presence of line segments in the environment. Some segments
such as the circular segment with large radius may be consid-
ered to be a line segment. The extracted lines from these non-
line segments turn out not to be position invariant. A solution
is to calculate the fitting error of each segment. If the fitting
error is large, it will not be considered as a line segment.
Another problem is that the intersection of two nearly parallel
lines is very sensitive to the robot position - the classical ill-
conditioning problem in numerical analysis of line intersection.
These estimated intersection points would have a large error
and affect the whole SLAM performance. Extracted line in-
tersections need to have such information attached to them as
attributes to avoid the algorithmic intersection calculations of
nearly parallel lines. This remains a focus of future research.
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