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Abstract—This paper proposes a multi-target tracking strategy
using a δ-Generalized Multi-Bernoulli Poisson (δ-GMBP) filter
applied in a multi-sensor scenario. The δ-GMBP distribution
is closed under the Chapman-Kolmogorov equation and Bayes
rule, and also closed for a wide family of multi-target likelihood
functions which allows implementations of different kinematic
and measurement models.

One difference between the δ-GMBP and the state of the art
of multi-Bernoulli filters is that the birth process is modeled with
a Poisson Random Finite Set (RFS), which can be more intuitive.
Further, in order to obtain the posterior of the δ-GMBP filter
recursion, it is not necessary to iterate over all the components of
the prior mixture. The δ-GMBP filter, also maintains track labels
in the multi-Bernoulli components, thus no other association
method is necessary.

The experiments carried out consist of people walking in an
open place and two sensors recording the scene from a fixed
position. The sensors used in the experiment are a 3D lidar and
a single-beam mono-pulse radar.

The δ-GMBP filter is compared with the classical Gaussian
Mixture Probability Hypothesis Density (GM-PHD) filter, and
the Marginal Multi-target Multi-Bernoulli (m-MeMBer) filter.

Index Terms—random finite sets, multi-target tracking, multi-
Bernoulli filter

I. INTRODUCTION

This paper proposes a multi-target tracking strategy using
a δ-GMBP filter applied in a multi-sensor scenario. The
δ-GMBP RFS is a combination of a δ-Generalized Multi-
Bernoulli (δ-GMB) RFS and a Poisson RFS. The δ-GMB
RFS models the known targets, similarly to the δ-Generalized
Labeled Multi-Bernoulli (δ-GLMB) [1], with the difference
that the potential targets that have not yet been detected are
modeled as a Poisson RFS, as in the m-MeMBer filter [2].
The δ-GMBP distribution is closed under the Chapman-
Kolmogorov equation and Bayes rule, and also closed for a
wide family of multi-target likelihood functions which allows
implementations of different kinematic and measurement mod-
els.

One difference between the δ-GMBP and the state of
the art of multi-Bernoulli filters is that the birth process is
modeled with a Poisson RFS, which can be more intuitive. A
justification for this can be seen by assuming that the expected
number of new born targets is known. If the new born targets
appear following a Bernoulli process with equal probability of
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being born, the maximum entropy distribution modeling these
assumptions is a Poisson distribution [3].

A fundamental advantage of the δ-GMBP filter is that it
maintains track labels in the multi-Bernoulli components, thus
no other association method is necessary. Further, in order to
obtain the posterior of the δ-GMBP filter recursion, a version
of which was first presented in [4], it is not necessary to
iterate over all the components of the prior mixture. The
solution consists of an iterative algorithm which solves cost
matrices in order to obtain components of the δ-GMBP RFS
that contribute the highest weights, to the mixture. As carried
out by Vo et al. in [1], the cost assignment is solved with
Murty’s algorithm, although for the δ-GLMB filter faster
implementations using a Gibbs sampler [5], [6] have already
been implemented in [7], which will be examined in future
work for the proposed δ-GMBP filter. Despite the maintained
track labels, this article will evaluate this algorithm based on
an unlabeled OSPA metric [8] for comparison with unlabeled
filters.

The experiment carried out consists of people walking in
an open place and two sensors recording the scene from fixed
positions. The sensors used in the experiment are a 3D lidar
and a single-beam mono-pulse radar. The sensors are assumed
independent and, thus measurements are conditionally inde-
pendent of the target states. When a new measurement is
received by the system, no matter which sensor it is from,
an update and correction using the filter is made, i.e., in
an asynchronous form. This is carried out because in real
applications, the data is extracted by different sensors at
different times. Therefore any component created due to a
sensor measurement can only be eliminated after all sensor
measurements are received. This avoids the rapid elimination
of components in the updated multi-Bernoulli mixture.

The δ-GMBP filter is compared with the GM-PHD fil-
ter [9], a Gaussian Mixture implementation of Mahler’s clas-
sical Probability Hypothesis Density (PHD) filter [10], and
Williams’ m-MeMBer filter [2]. This is a MeMBer filter [10]
that models target births with a Poisson RFS. The m-MeMBer
filter was implemented using Murty’s algorithm [11], as used
in [1], instead of the Loopy Belief Propagation (LBP) algo-
rithm [12] used in [2], to ensure convergence.



II. THEORETICAL BACKGROUND

This section briefly describes the theory behind the δ-GMBP
filter. A complete description of the filter is given in [13].

A. Random Finite Sets Overview

A RFS is a set containing a finite number of random
variables which can also be an empty set. It is random in
the number of elements and in the values of each element
in the set, and it is described by its Probability Density
Function (pdf). Poisson and multi-Bernoulli are common RFS
distribution types. The Poisson RFS models the number of
elements in the set following a Poisson distribution, while the
elements are spatially distributed according to a given density
function. A multi-Bernoulli RFS, models the existence or non
existence of the elements, and when the elements exist they
distribute according to a given pdf.

B. Standard Bayesian Recursive Filtering

Bayesian filtering consists of two parts. The prediction
follows the Chapman-Kolmogorov equation (1), while the
correction uses Bayes rule (2)

p(Xt+1|Z1:t) =

∫
p(Xt+1|Xt)p(Xt|Z1:t)δXt (1)

p(Xt+1|Z1:t+1) ∝ p(Zt+1|Xt+1)p(Xt+1|Z1:t), (2)

where Xt and Xt+1 represent the multi-target state at time
steps t and t+ 1 respectively, Z1:t all observed measurements
from time 1 to t, p(Xt+1|Xt) the state transition model and
p(Zt+1|Xt+1) the measurement model.

In order to solve Equations 1 and 2 the transition and mea-
surement models must fulfill various properties [10, p. 313].

C. The δ-Generalized Multi-Bernoulli Poisson Filter

The δ-GMBP RFS is a combination of a δ-GMB RFS
and a Poisson RFS which is closed under the prediction and
correction steps. The δ-GMB RFS models the known targets,
while the Poisson RFS models the potential targets that have
not yet been detected:

X ∼ δ-Generalized Multi-Bernoulli(Θ) ∪ Poisson(DU )︸ ︷︷ ︸
δ-GMBP(Θ,DU )

(3)

where DU represents the density of a Poisson RFS and Θ is
a set with all the parameters of the δ-GMB RFS.

A cost matrix containing the logarithm of the weights of the
components of the posterior δ-GMBP distribution is built using
the prior δ-GMBP components and the measurements. The
cost matrix has a physical interpretation. It explicitly includes
cost values, which correspond to clutter, new targets and miss
detections as well as known detections, surviving and non-
surviving targets. The cost assignment is solved using Murty’s
algorithm [11]. The details and a pseudo-code implementation
of the recursion, prediction and correction can be found in [4],
[13].

The mixture weights of new targets are obtained from the
Poisson component of the δ-GMBP RFS. Because a uniform
spatial distribution is used, there is no closed form solution
for computing this component, but a reasonable assumption is
that the components can be obtained by sampling points from
he inverse likelihood function x ∼ g−1

z (z, ·).
To extract the estimated state from the filter, the first

moment of the Generalized Multi-Bernoulli RFS is used.
When using a Gaussian mixture density implementation of
the transition and observation models, the target states are
obtained from the peaks of the first moment of the δ-GMBP
distribution. In the experiments here, peaks, with weights
greater than 0.5 are assumed to be targets.

III. EXPERIMENT

The experiment consisted of people walking in an open
place and two sensors recording the scene from a fixed
position. The sensors were a Velodyne VLP-16 lidar and a
Delphi RSDS radar. The radar internally processes detections,
with an allocated space for up to 64 detections. It has a field
of view of up to 200 m in range and ±100◦ in bearing. The
detections consist of position r (range), θ (angle), ṙ (radial
velocity) and the amplitude of the signal in dBsm (decibels
relative to one square meter). The frequency of measurements
of the radar is 20 fps. The lidar creates 3D images by using
16 individual lasers (channels), each channel scanning through
360◦ in bearing. Each channel is separated from the next by
an elevation angle of 2◦, in the interval [−15◦, 15◦].

A. Detections

In order to use the δ-GMBP algorithm [13], detections are
needed. As the mono-pulse radar already detects targets, no
other detector is required. However, for both the radar and
lidar, background removal is carried out in order to reduce
clutter and false alarms. This procedure is now explained.

1) Radar and Lidar Background Removal: Background
estimation is carried out by calculating a two dimensional
histogram of the reported radar detections or raw lidar points.
In the case of the lidar, the 3D positions of the raw points
are projected onto a 2D plane by removing the z coordinate.
First, the detection area is discretized into polar bins, which
are indexed by their bearing angle bin number θi, and range
bin number rj . For each sample, the bin corresponding to a
detection is computed and the histogram bin is incremented
by 1. The resulting histogram is used to model the background
measurements.

Figure 1 shows the radar background detection results. In
the left the histogram, shown with a logarithmic intensity
scale, darker shades indicate a higher number of repeated
positions detected by the radar. The right graph shows the es-
timated background points in black after applying a threshold
to the histogram.

2) People Detection with the Lidar: The implemented lidar
detector only detects people between coordinates z = 0 and
2m, based on the assumption that people are all on the ground
plane and that their heights do not exceed 2m. The detection
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Figure 1. The computed histogram for background removal for the mono-
pulse radar. The left graph shows the histogram with a logarithmic intensity
scale and right graph shows the background after using a threshold on the
histogram. Darker colors indicate a higher number of repeated positions
detected by the radar.

is performed in two steps. Firstly, clustering by channel takes
place, in which each channel corresponds to a laser angle.
Secondly clustering the detections among all the channels is
then carried out.

Clustering by channel: The data per channel is a 3D
vector of (x, y, z) coordinates, sorted by bearing angle in an
ascending order. Two consecutive points of a j-th channel
are assumed to belong to the same object if the distance
between them is smaller than a given threshold. The process
produces N sets of points P j

1 , ..., P
j
N , that may contain all,

or a fraction of, points belonging to the object. DBSCAN
clustering [14] is used to join those sets P j

k that were not
joined in the previous process, thus producing new sets of
points P̃ j

1 , ..., P̃
j

Ñ
. DBSCAN allows the use of a distance

matrix to perform the clustering operation. Therefore, it is
possible to cluster general structures, which are represented as
sets (Pk in this case), in contrast to most state of the art clus-
tering methods, which can only group vectors. The distance
matrix Dj(k, l) represents the distance between P j

k and P j
l .

The distance Dj(k, l) corresponds to the combined perimeter
formed by P j

k and P j
l . When the combined perimeter is larger

than 2m, P j
k and P j

l are considered to be part of different
objects, thus, the distance value is penalized with a high value
(Dj(k, l) = 1000).

Clustering among all channels: The elements to be grouped
are new sets of points P̃ j

1 , ..., P̃
j

Ñ
, that are reorganized as

P̃1, ..., P̃M̃ , where M̃ =
∑15

j=0 Ñ
j . Clustering is then again

carried out using the DBSCAN algorithm, and the distance
corresponds to:

D̂(P̃k, P̃l) =

(
1− A(P̃k) ∩A(P̃l)

A(P̃k) ∪A(P̃l)

)
· A(P̃k ∪ P̃l)

A(P̃k) ∪A(P̃l)
(4)

where the first factor is the Jaccard dissimilarity, multiplied
by the ratio between the convex polygon generated by the
points of P̃k ∪ P̃l and the union of the areas. When P̃k and P̃l

do not intersect, the Jaccard dissimilarity is 1. However, it is
necessary to measure how separated the areas in that scenario
are, in order to join areas separated by a small distance. This

Figure 2. The detection of people using the Velodyne lidar. The small black
points represent the 3D lidar data and red circles represent the detections.

is why the second factor is used. The distance is penalized
with a high value (1000) to reject distant sets of points.

An example of people detection using the lidar can be seen
in Figure 2.

B. Tracking
The δ-GMBP algorithm described in [13] is used to track

people using the radar and the lidar.
All sensors are assumed to provide conditionally indepen-

dent measurements, and each one measures with its own
frame rate. The δ-GMBP filter obtains its data from both
sensors at any time, since the data is not synchronized. The
prediction of the state using the kinematic model is therefore
computed using the increment of time since the arrival of
the previous measurement, no matter which sensor the data is
from. The state is then corrected using the observation model
corresponding to the current sensor.

The use of different sensors with different noise sources
should not affect the state target estimates, because the sensor
observation models take into account the different statistics of
each the sensor.

1) Transition Model: The kinematic state of a person is
given by a vector of positions and velocities in the ground
plane (x, frontal, and y lateral coordinates) x = [x, y, ẋ, ẏ]T .
The state transition function is assumed to be linear with
constant velocity and covariance matrix Q, and follows Equa-
tion 5.

xk+1|k
yk+1|k
ẋk+1|k
ẏk+1|k

 =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 ·

xk|k
yk|k
ẋk|k
ẏk|k

+ ε∆T

Q = σ2 ·


∆T 2/2 0

0 ∆T 2/2
∆T 0
0 ∆T

 ·


∆T 2/2 0
0 ∆T 2/2

∆T 0
0 ∆T


T (5)

where ∆T is the time step between consecutive samples, ε∆T

is a zero mean transition noise vector with covariance Q, and
σ corresponds to the acceleration standard deviation.



2) Measurement Model of the Mono-pulse Radar: In order
to use the δ-GMBP algorithm with the radar, a likelihood
function that relates a measurement with the state of a track
must be designed. The measurement vector is zr = [r, θ, ṙ]T

which corresponds to the range, angle and range rate measured
by the radar.

Due to the non-linearity of the measurement in relation to
the state, the Unscented Transform (UT) [15] is used to map
the statistics of the measurement and states. An observation
likelihood function zr = gzr (x) must be determined, in order
to correct the prediction made by the transition model.

Radar measurements and target states have different co-
ordinate systems. Small errors in the angular rotations be-
tween both coordinate systems produce large errors related
to the measurements of targets located far from the sensor.
For this reason a 3D rotation and translation transformation
must be included, even when the sensor measures in a 2D
plane. The relation between both, radar and state coordinate
systems is given by the typical rotation and translation relation
~x = R ·~zr + tr, in which ~x = [x, y, z]T and ~zr = [xr, yr, zr]T

represent the 3D Cartesian positions in the state and radar
coordinate systems respectively, and tr = [txr

, tyr
, tzr ]T

represents the translation vector while R = [rij ], i ∈ {1, 2, 3}
and j ∈ {1, 2, 3} is the 3D rotation matrix.

The value of z is not known, but it is known that zr = 0
because the radar measures in a plane and does not have a
vertical component. Therefore z can be computed from the
state using the equation formed by the third equation of ~x =
R · ~zr + tr:

z − tzr = − 1

r33
·
[
r13 r23

]
·
[
x− txr

y − tyr

]
. (6)

By differentiating with respect to time, the velocity compo-
nents of the state are obtained. The transformation between
state and measurements in Cartesian coordinates is then given
by: 

xr
yr
ẋr
ẏr

 =

[
R̃−1 02×2

02×2 R̃−1

]
·


x− txr

y − tyr

ẋ
ẏ

 ,
where R̃−1 =

[
RT

2×2 −
1

r33
·
[
r13r31 r23r31

r13r32 r23r32

]]
,

(7)

R2×2 corresponds to the sub-matrix formed by the first two
rows and columns of R, and 02×2 is a matrix of zeros of the
same dimension.

As the radar also computes radial velocity, the relation with
the velocity components of the state must be included. The
corresponding position and velocity relations are shown in
Equations 8.

r =
√
x2
r + y2

r

θ = arctan(yr/xr)

ṙ = ẋr cos θr + ẏr sin θ.

(8)

New born targets are obtained by sampling from the inverse
measurement function x̃ ∼ g−1

zr (zr). The transformation for
computing the new born targets is given by inverting 7 and 8.

3) Measurement Model of the Velodyne Lidar: The detec-
tions of people obtained from the lidar are similar to the radar,
but do not include a velocity component. The measurement
vector is zl = [r, θ], which corresponds to range and bearing.
The likelihood function for the lidar is also very similar to
the radar. The relationship between the observation and state
vectors follows Equations 9.

r =
√
x2
l + y2

l

θ = arctan(yl/xl)
(9)

where ~x = R·~zl+tl, in which ~x = [x, y, z]T , ~zl = [xl, yl, zl]
T

and tl = [txl
, tyl

, tzl ]
T as with the radar in Section III-B2.

New born targets are sampled in the same way from the
inverse measurement function x̃ ∼ g−1

zl
(zl).

IV. RESULTS

For evaluation purposes here, some images from the results
using the δ-GMBP filter are shown in Figure 3. The right
figures show the raw lidar points (small black points), the
lidar detections (dark green circles), the radar detections (red
circles) and the fused sensor based track estimates (blue
squares). In the figures it can be seen that while the radar
and lidar occasionally produce distinct detections, the fused
track estimates usually combine the detection qualities of
both sensors. For example in Figures 3 (a), (b) and (c) the
estimate within the dashed circle A is produced only by radar
detections, the estimate in circle B only by lidar detections,
and the estimate in circle C by both sensors. Note also that
tracks are maintained during the absence of detections from
each sensor, as can be seen in the case of the estimate within
the dashed circle A.

Figure 4 shows the results of the multi-sensor version of
the δ-GMBP, which fuses the radar and lidar data, which is
compared with its single-sensor equivalent using the OSPA
metric [8]. The results based only on the radar had a very
low performance, while those based only on the lidar show
improved performance. The performance based on both sen-
sors yielded the best results showing a slight improvement
over the results based only on the lidar. This is because of
the higher spatial noise and detection errors committed by the
radar. A comparison between the δ-GMBP, m-MeMBer, and
PHD filters, based on both the radar and the lidar sensors
is shown in Figure 5. It can be seen that the δ-GMBP and
m-MeMBer filters perform similarly. The failure of the PHD
filter when processing both sensors can be explained by its
documented forgetfulness when compared with the multi-
Bernoulli filter [16].

V. CONCLUSIONS

As expected, filtering using the multi-Bernoulli, δ-GMBP
and m-MeMBer filters, yielded better performances than
the PHD filter. A slight improvement of the δ-GMBP filter over
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Figure 3. Images from radar and lidar tracking using the δ-GMBP filter. The left images show the projection of the detections and estimates on images
recorded with a USB webcam. The right images show the 3D points, detections and estimates. Black points represent Velodyne range points, dark green
circles represent people detection with the Velodyne, red circles radar detections, blue squares the estimates. Dashed blue circles labeled A, B and C indicate
estimates from radar detections, lidar detections and both sensor detections.



OSPA metric values using the δ-GMBP filter
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Figure 4. OSPA metric, with c=0.4 and p=2 using the δ-GMBP [13] filter,
for tracking using the radar alone, the lidar alone and fusing both sensors.

OSPA metric values for different filters
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Figure 5. Comparison of δ-GMBP, m-MeMBer and PHD filters using the
radar and the lidar asynchronously. δ-GMBP in green with circles, m-MeMBer
in red straight line, PHD in black dashed line.

its m-MeMBer counterpart is also apparent in figure 5. The
tracking performances of the δ-GMBP and m-MeMBer filters,
based on both the radar and lidar data showed only slight
improvements over the case when only lidar data was used.
This is because the information provided by the radar contains
much higher detection and spatial errors than that of the lidar.
It should also be noted that the detection algorithm within
the radar is not specifically designed to detect people. This is
why the detections, which actually correspond to people, are
sporadic in nature.

In order to improve filter performance, many improvements
can be made, such as:
• Improving the state transition model, with a non-constant

velocity model that takes into account the sudden stop-
ping and change of direction of people.

• Modifying the likelihood model to include target descrip-
tors such as the dimension of the targets, histograms,

image descriptors or radar cross section.
• Augmenting the target state with the above descriptors.

Thus, the probability of maintaining a correct track could
be increased and wrong associations should be reduced.

• Using models for the probability of detection and for the
background, taking into account the occlusions and the
field of view of the sensors, in order to produce more
realistic updates.

• Using the Gibbs sampler, for solving the cost assignment,
as used in [7]. The Gibbs sampler has a computational
complexity which is linear in the number of measure-
ments, in contrast to Murty’s algorithm which is cubic at
best. This would allow the proposed algorithm to run in
real time.
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