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1 Abstract 

We describe the design of a real-time obstacle avoidance and 
navigation strategy for a mobile robot, using simulated time of 
flight infra-red data. Algorithms have been developed in order 
to  overcome the undesirable effect of potential traps within the 
field, and a new approach for dealing with sensing whilst moving 
is demonstrated. At present we show simulated results of a 
vehicle moving under artificial potential force equations, which 
is designed to  achieve modification of behaviour a t  a speed close 
to the normal operational speed of a real mobile. 

2 Introduction 

One of the fundamental problems in mobile robotics research 
is that of providing a reliable model of the environment, and 
then extracting the information necessary to  guide a mobile t o  
a given location. In this paper we describe our progress towards 
a method for real-time obstacle avoidance and navigation using 
a single rotating infra-red sensor. 

We examine particularly the following issues: 

A method for overcoming potential traps caused by local 
minima within a potential field. 

A potential field algorithm, developed specifically for mo- 
bile robot navigation, whilst on the move. 

To qualify as a real-lrme capability, we believe that a robot 
must be able to  avoid an obstacle whilst it is traveling close to  
its normal speed, which for our vehicles is at  about 0.4 m/sec. 

We attack the proble,m of navigation in our environment, 
by applying an artificial potential field algorithm t o  sampled 
data provided by a continuously rotating sensor. Much previous 
work has focused upon the use of artificial potential fields in 
the navigation problem [3], [5], [8], but navigation using such 
an approach, whilst on the move, still appears to  be a relatively 
iinresearched issue. 

3 An Optical Sensor for Navigation. 

In  ordrr to bring our work into context, we describe in this sec- 
tion an infra-red optical range finder, which is currently under 
construction a t  Oxford. A simulation of the data produced from 
such a sensor is the starting point for our navigational ideas and 
experiments outlined in sections 4 ,  5 and 6. 

In the past we have experimented with range finders which 
transmit infra-red light into the environment and produce a n  
output proportional to the amplitude of the returned signal. 
Although the range finders suffer from limited range (approx 4 
metres) due to  the inverse square law attenuation of the light, 
their ability t o  resolve discontinuities within that range is good. 
This is because unlike sonar, it is possible to focus 1.R light 
down to  very narrow beam widths (approx 1.5'). The major 
problem with these amplitude measuring devices is their depen- 
dence upon the reflectivity of the detected surface. For example 
a change in colour or reflectivity on a wall is indistinguishable 
from a change in depth as far as the sensor receiver circuit is 
concerned. 

A morr appealing sensor, with similar beam width advan- 
tages, is an optical range finder currently in use at A.T k T 
Dell Laboratories, U.S.A, [4]. This sensor again uses infra-red 
light for detection purposes, but produces an output which is 
proportional to the time offlight of the beam, in a relatively 
inexpensive way. The sensor is therefore largely unaffected by 
the reflectance of the environment, except for cases of extremely 
high reflectance or absorbtivity. 

Results from the sensor, which has been used for naviga- 
tional experiments on a vehicle named Blanche [7], are impres- 
sive, in that  depth readings correspond extremely well to actual 
object distances. 

In the following sections we begin to  develop our algorithms 
which make use of, at  present, simulated data. In developing the 
navigational algorithms, we have produced a simulation which 
relates as closely as possible to  the real situation of a single 
rotating sensor onboard a mobile vehicle. 

4 The Potential Field Algorithm. 

At present our input sensor da ta  takes the form of simulated 
infrared time-of-flight range readings, with which we wish to  
model our environment, whilst 'on the fly'. These facts give us 
strict conditions t o  follow, when considering the possible rate 
of information extraction from the sensor, speed of algorithm 
execution, and the rate at which a vehicle will respond to up- 
dated velocity control signals. When dealing with a real vehicle, 
it would be ambitious to  expect any response to changes in the 
desired velocity control signal, more than five times per second. 
On the other hand, because we are dealing with an infra-red 
light sensor, the speed of retrieving the depth information is 
restricted only to the minute electronic delays presented by the 
infra-red driving equipment [7]. These considerations have had 
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a directing influence on our navigation strategy, which is ex- 
plained in detail below. 

With rcfcrcnce to figure 1, we consider the mobile t o  be the 
origin of a polar coordinate system, within which depth read- 
ings, provided by the continuously rotating sensor, are recorded. 

~~ 

Figure 1: The  mobile is the origin of a polar coordinate system, 
upon which force vectors are calculated directly from infra-red 
range readings. 

T h e  angle 7 will be referred to  as the sampling angle, and the 
radial distance di as the i th depth estimate, recorded directly 
from the sensor output. Corresponding t o  each range vector d;, 
a force vector 6 is immediately calculated obeying the simple 
artificial potential field equations: 

l f ; l = n  A 

where A is a fixed constant. At the end of a 360' sweep of 
the environment, the forces are resolved and summed in order 
to  give an output which can be considered to  be the desired 
new repulsive velocity components V, and V,, both parallel and 
perpendicular to  the vehicle's centre line, caused by the current 
environment surrounding the mobile. 

2nI-I 

V, = f icos( i7)  (3) 

V, = C fisin(i7) (4) 

i=l 

2* /7  

i=l 

Note that the summation is completed when i = ( Z A / Y )  
which must be an integral value when 7 is measured in radians. 

Figure 2 shows a mobile and the desired goal position within 
an office type environment, measuring approx. 8 metres square. 
The  large cross is the desired goal position and each small cross 

corresponds t o  a single depth estimate, di taken within a single 
3F0° scan. 180 such depth readings were recorded - ie: 7 = 2'. 
T h e  new position is also shown for the vehicle, which has moved 
under a constant attractive force from the goal and also the re- 
pulsive forces provided by the environment, shown in equations 
3 and 4. In this new position, the vehicle is again ready t o  
repeat the process. Figure 3 shows the completed path of the  
vehicle under this simple artificial potential field type navigation 
strategy. 

Figure 2: A simulated infra-red time of flight scan. Each cross 
shows a single depth reading, and a force is produced opon the 
vehicle, in the opposite direction. The  scan shows 180 such 
depth readings. 

As can be seen the mobile has not reached the goal, but 
has fallen into a local minima or potential trap. The force of 
attraction from the goal is counter balanced by the forces of 
repulsion from the wall, in front of the mobile. 

5 Goal Relocation 

In the past many researchers have offered methods for over- 
coming potential traps of this nature, most of which require 
a-priori knowledge of the environment, before the sensing pro- 
cess begins, [8],  [6]. An alternative method recently suggested 
by Borenstein 121, is tha t  of wall following when a potential 
minima is reached. 

I+ 
r 
! 

Figure 3: The  force of attraction from the goal and the forces 
of repulsion from the wall, in front of the mobile, cancel. The 
vehicle has reached a local minima and is trapped. 

In order t o  keep in context with the concept of a continuously 
rotating sensor, we introduce a method of gonl relocation, in 
which the goal is temporarily moved according to the sensed 
geometry of the robots current environment. From odometric 
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estimates and a single scan of tlie environment, the algorithm 
decides wliether or not the robot has a clear path to  its goal. 
If it hasn’t, then the goal relocation algorithm ‘looks for a g a p ’  
and temporarily moves the goal into that gap. More specifically, 
the robot records the depth estimate d, i n  the direction of the 
goal, and notes whether or not this critical depthis less than the 
radial distance to the goal, observed froin long term odometric 
estimates. If it is, then the next depth estimate, d,+l is recorded 
as normal, and the third range reading, d,+2 ran be found in 
terms of d,+l and rl , ,  i f  it is to  lie on the same straight line. 
Mathematically, if: 

(5) 
didi+l ’ ( 2 4  cos 7 )  - d;+l 

then a gap or convex corner has been found. A temporary goal is 
then relocated after tleptlr reading d,+2 was recorded, in order 
to allow for the width of the robot. This temporary goal is 
shown as tlie largest cross in figure 4. 

Again tlir small crosses show sensor readings from the envi- 
ronment, but the slightly larger crosses show from top to  bot- 
tom, the detection of the critical depth, to  the temporary relo- 
cation of the  goal. (The smaller + to  the right is the original 
goal). 

Figure 5 shows the almost completed path of the vehicle. 

Figure 4 :  A single scan of the environment, showing the effect 
of goal rclocation. 

Figure 5: The almost completed path using the method of goal 
relocation. 

The  small t ’ s  show the history of thp temporary relocated 
goals, throughout tlie path. Clearly these trace out a set of 
‘beacons’ or ‘aim points’ that tlie robot has used whilst navi- 
gating. The  advantages of effectively splitting the path using 
this techniqiie is clearly shown, and offers a solution to  many 
potential trap situations. 

6 The Effect of Motion 

So far we have considered strictly stop - scan - move - stop type 
motion for a mobile robot. I n  a real situation it would be more 
realistic to  consider the sensor da ta  acquisition process taking 
place during vehicle motion. 

In order to  predict the next velocity, the results from the 
previous 3G0’ scan are used. If the scanner (on board the mo- 
bile) has moved whilst taking that scan, then clearly each depth 
reading will incur some error, when compared to  the correspond- 
ing depth reading, d; tha t  would have resulted with the vehicle 
stationary in its position a t  the end of that  scan. This elTect is 
shown in an exaggerated form in figure 6. 

01 X 

I 

~~~~ ~~ 

Figure 6: T h e  effect of motion upon the sensor d a t a  acquisition 
process. 

In order to  overcome the distortion incurred due to the mw 
tion of the vehicle, we rewrite equations 3 and 4 as follows: 

(7) 

Tlie weighting constants ,’?I and p2  have been chosen in order 
to  adjust each depth reading as it arrives from the sensor. Each 
value of p is raked to the power (2r/r - i), in order to  take into 
account the fact that the greatest error will most likely be in  
the first depth readings of each scan, when compared with those 
tha t  would have been recorded with the vehicle stationary in the 
new position (figure 6). Hence when i = 2a/7 (ie: a t  the end of 
a scan), p(2n/7-i) = 1, meaning that the last depth reading is 
not adjusted a t  all, since it is correct. So by premultiplying each 
depth reading d;  by p(2n/7-i) we apply maximum correction to 
the initial readings (small values of i) and least correction to  
the final readings (i 2a/7).  

Our  reason for choosing the weightidg constant, p in the 
above equations, is to  distinguish this method of navigation as 
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a truly real-time process. A technique used in the past for rednc- 
ing the ellect of vehicle motion during sensor da ta  acqnisition, 
was t o  take tlie vector sum of each depth reading and the vehi- 
cle's velocity 14). This is used to  predict what the corresponding 
depth reading rould be, were the mobile stationary in its ini- 
tial posilion. In a real-time situation, t o  read in displacrment 
mcasnrernents from the odometers, and calculate vector sum-  
mations between snccessive depth estimates, could hinder tlie 
spcrd a t  which the infra-red sensor rotates, and hence updates 
the vehicle's velocity. 

2-transform analysis ofequation 10, for specifir inpnts I 

has produced interesting results, showing the dependence fi 
output signal Y ( n ) ,  the repiilsive velocity component in :& *  

rection of motion of the mobile, on the vehicle speed r-=-- = 

during wnsor data acquisition. Consider a general deptt - 8 .  

ing d , ,  figrirr 8 ,  and its rlependenre upon the environmm. 
the vehicle's forward velocity V. 

For any environment: 

d,  = f ( i ,  Y, V )  -~ 
II  a scan were taken on a stationary vehicle, p would be set 

make the velocity component Vu more dependent upon the force 
vectors placed upon the vehicle from in front, than those from 
behind. This is done in order to take into account the fact that 

to llnity. Physically @ is a weighting factor llscd to 
. / ( i ? 7 7 v )  represents a function Of the ang'p - -  

the vehirle's vrlocity V.  

digital filter is: 
We can see tha t  from figure 7 tha t  our inptlt z(i) to . .  

tlie vchicle is moving with an old velocity K - Vu, where li is 
the attractive velocity provided by the goal, into the on-coming 

1 
d? 

z ( i )  = -Acos(ir)  = g ( i , T , V )  . -  
I .-  

environment. 
The unilateral z-transform of a function z ( i )  is given by In order to  minimise the ellect of motion upon tlie sensing 

process, we clearly need a solution for p, and t h e r e b e  intro- 
duce the  following mathematical model, for the  y component 
of the repulsive velocity (the z component following a similar 
analysis). so that:  

Consider a system which has a continuous input signal, de- 
pendent purely upon the shape of the environment ie: system 
input = &. We multiply this signal with a temporal cosine 
function, A cos(iT), which is non zero only at the discrete values 
of T when T equals 7, the sensor sampling angle. Then, pre- 
inmiltiplying by the weighting term p and summing the above 
discrete signal values, we have: 

which is identical t o  the y component of our output velocity. 
Hence by using a single rotating sensor, we can inter-relate tem- 
poral and spatial sampling within a non-recursive filter. Figure 
7 shows a model for our discretised control system, for our y 

From equation 10: 

( 1 5 '  

Upon taking the inverse transform and replacing i = 2*/7 (sinrc 
we are only interested in the last output from the filter for earh 
scan) wc get: 

Y(2*/7) = 147, V,P) (16) 

Note that i f  tlie vehicle were stationary in its final position (after 
the scan) then: 

Y(2*/7) = h(r ,  1 )  (17) component of velocity only. 

I Snnplimg mpul I 

since this is equivalent to the above case with V = 0 and P = 1.0. 
The error e i n  scanning whilst moving is given by: 

e = 4 7 )  - h(r ,  V, P )  (18) 
which is minimised whsn: 

- de = h'(y ,V,P)  = 0 

dP 
Figure 7: The sampling process used to  extract forces from 
continuously rotating sensors. 

Henre for minimtlm error, p = j (7 ,V) ,  ie: p is a function of the 
vehicle's velocity V, and the sensor incrementing angle 7. If the 
fnnction in equation 11 was known before the sensing process 
took place, then an exact solution for p could be found in terms 
of the velocity V of the vehicle. With a-priori knowledge of the 
environment, the above method could be used to  minimise the 
errors in scanning due to motion. 

In order t o  overcome the problem without a-priori knowledge 
however, we need an alternative means for finding p. Again 
refering to  figure 6 ,  we can consider the sensor readings recordcd 
during the  motion between the old and new positions, to be 
a combination of the sensor readings accumulated in the old 
and new positions whilst stationary, with the inclusions of small 
error terms: 

The  filter a recursion formula, given by the direrencc 
equation: 

y(i)  = z(i) t By(i - 1) , y(-1) = 0 (9) 
giving a z transfer function: 

(10) 
1 I'o = G(z) = ___ x ( 2 )  1 - pz-1 

where z is the delay opcrator e'=, or in our case e v .  
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so lliat: 

wlirre ( I , , , ,  is a genrral depth rrading rccorded whilst Irioving, 
d,,, is a geiieral drptli reading recorded whilst stationary in tlle 
old position (figure F) ,  d,,, is a grnrral depth reading recortled 
whilst stationary iu the new position, and the small rrrors ~ ( t )  

cleprntl upon the  riivironment. 

G.l Experimental Results 

Figiircs 8 a i d  9 show plots of the value of p wliicli minimises 
tlir vrlorit y crror, due to  scanning whilst moving, vcrsrs tlie 
vrlocity dimrreiice from thc previous two scans. 
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Figure 8: Curves showing the variation of 0 with velocity dif- 
f ~ r r n c e  for different cnvironments, as a mobile approaches a 
boundary. Each curve convergcs t o  the same line as the rrpul- 
sive velocity exceeds 0.1 m/s. 

As can be seen, for tests carried out within different en- 
vironments, each curve converges to  the same line, when the 
repulsive velocity exceeds approx 0.1 m/s. When the robot is 
not close to any walls or obstacles, the repulsive velocities are 
small and the value of p cannot be predicted accurately within 
dimerent environments. When a vehicle is within close proxim- 
ity of obstacles or walls, the last recorded repulsive velocity is 
high and p is approximately the same for all environments, a t  
that velocity difference. A final graphical analysis, shown in fig- 
ure 10, shows tlie error in the computed velocities, when leaving 
13 = 1.0 whilst scanning during motion. 

i 99 ' I  

Figure D. Curves showing the variation of /;I with velocity rlilrrr- 
encr for dimerent environments, as a mobile moves away from a 
boundary .  Each curve converges to  the same line as the rrpul- 
sive velocity cxcreds 0.02 ni/s in magnitude. 

Figure 10: T h e  variation in error of the new calculated velocities 
verses actual repulsive velocity, when the value of 0 is constantly 
set equal to 1.0. When the repulsive velocities are small, the 
error in leaving /3 set to 1.0 is negligible. 

As can be seen the error is extremely small except when tlie 
magnitude of tlie repulsive velocity exceeds approximately 0.1 
in/s (or 0.02 m/s  when moving away from a boundary). Ilenre 
we do  not nced to predict until the curves shown in figures 8 
and 9 converge, or physically speaking when a mobile is close 
to m y  point within its environment. 

Figures 11, 12 and 13 demonstrate the effect of gnin schednl- 
ing tlie valuc of p from tlie look up tables shown in figures 8 
and 9, [ I ] .  

In figure 11 we sce the original stop - scan - move - stop 
type inotion expla.incd earlier. This gives us the desired path 
for our robot, when its motion is continuous. In figure 12 the 
value of p is set pernianently to  1.0 t o  show that  gain sclieduling 
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is nrcrssary when a mobile approaches in  close proxiniity to its 
environnient. Filially figure 13 shows the path of the vehicle 
takrn wlirn /3 is arljustrcl according to  the look up t a l h  s11ow11 
earlier. 

Figure 13: T h e  veliiclc is scanning whilst moving, and the value 
of p is being adjusted according to  the look up tables. The 
efTcct is cledrly shown. 

rral-time, by wrigliting each tlcpth cstimatc from the en- 
vironment, as it is rcatl from the sensor. 

Figure 11: Stop - scan - move type motion using the mctliotl of 
goal relocation to  navigate using the potential force equa.tions 
shown earlier. This is the dcsired path for a mobile. 

Figurc 12: The vehicle is scanning whilst moving, with the value 
of p set constantly t o  1.0. Its rotation near to the convex edge 
is incorrect due to sensor reading distortion. 

7 Conclusions 

We have prcsented in this paper new algorithms for processing 
infra-red time of flight sensor data,  from a continuously rotating 
range finder. The a lgor i thm have been developed in order not 
t o  restrict the flow of da ta  from the ranger, and t o  run using 
local sensor da ta  only. Several experiments using simulatcd da ta  
have demonstrated that: 

artificial potential force equations are capable of navigat- 
ing a mobile successfully, if the goal is placed in a suitable 
position. A method for automatically relocating tempo- 
rary goals has been demonstrated. 

distortions within the repulsive velocities, caused by scan- 
ning whilst moving, can be dealt with efficiently, and in 

In the near future we intend t o  examine the response of 
a real vehicle to  changes in velocity demand produced by the 
algorithm. We further intend to  extend our research using mal 
infra-red time of flight data.  
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