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Abs t r ac t  

This paper presents a unified appnmch to the naviga- 
tion and control of a mobile robot. In the past, path 
planning has often been referred to as  a 'high level" 
task and has been completely sepamted from the so 
called 'lower level" control of a real mobile vehicle. 
We consider here the total energy of a mobile vehicle 
when influenced under a goal seeking navigation strat- 
egy. This energy function is used to produce a control 
law directly to drive a mobile vehicle. We also in- 
corpomte directly an estimate of an artificial repulsive 
potential field into the low level controller. 

1 Introduction 

In recent years, the construction and analysis of exact robot 
navigation algorithms ie: those which guarantee the safe conver- 
gence of the trajectory of a mobile robot from a point of origin 
to  a point of destination, has become a growing concern. In this 
paper we interrelate a method for the path planning of a mobile 
robot to the application of a correct control law. We take our in- 
spiration from the work by Daniel E. Koditschek [4], in that we 
derive a control law for a mobile vehicle from considerations of 
its total energy, when influenced under the action of a potential 
field. We explore how far we can use the known theoretical tools 
of classic and non-linear control theory, to safely manoeuvre a 
real mobile vehicle within a previously unexplored and unstruc- 
tured environment. In section 2 we derive a control law for any 
mobile vehicle placed under the action of both attractive and 
repulsive artificial potential forces. Contrary to  previous work, 
we incorporate directly an estimate of the repulsive component 
of the artificial potential field, produced by an on board sensor, 
into the motor control system driving the robot. This is done 
in order to allow the real time and continuous calculation of the 
artificial repulsive force field acting upon the mobile. Section 3 
analyses the stability and convergence properties of the closed 
loop system suggested in section 2. As an addition to  previous 
work we find necessary and sufficient conditions for asymptotic 
tracking of the target input vectors. The application of the de- 
rived control law to  real vehicles is discussed in section 4 along 
with a quantitative analysis of the aforementioned conditions, 
in terms of a mobile robot's motoring parameters. 

2 Control: Energy Considerations 
Consider an unknown potential function 4 which assigns a scalar 
value to every position within the plane surrounding the mobile 
observed by the sensor, and vanishes uniquely at the target with 
position vector Xd, ie: +(Xd) = 0. With the inclusion of its ki- 
netic energy, the total energy possessed by the robot is q given 
by: 

q=iMxTxir+41 ,  2 (1) 

where M represents the total mass of the mobile and x its ve- 
locity vector within the plane. Differentiation with respect to x 
oft), gives the total external force acting on the mobile robot: 

In equation 2, V$ is the total force function which is perpen- 
dicular to  t/ at all points in space. 

We consider the potential function to be made up of two 
components, namely an attractive field $att, and a repulsive 
field y&,. The attractive field or "cost function" assigns scalar 
values, within the plane of action of the mobile, which vanish 
uniquely at the target q and grow larger farther away from q. 
A simple example of this is the quadratic Hooke's Law function: 

In order to find the total external force on the mobile, we 
need the value of Vll, to enter into equation 2, so by using 
equation 3 we obtain: 

V + =  ICl(x-~d)-V+rcp (4) 

Discrete values of V&p are produced from single distance read- 
ings from the centre of our mobile to points within its local 
environment. After a full 360° rotational scan of the environ- 
ment produced by the on board sensor, these discrete values are 
resolved along the components of the two dimensional velocity 
vector of the robot and summed in order to produce the vector 

If we let FCot in equation 2 represent a dissipative force: 
V$rcp PI. 

Fat = -Kz X (5) 

the negative sign indicating dissipation, x the velocity vector 
of the mobile and K2 a positive constant, then as the mobile 
pursues its goal, its total energy must decrease for all non-zero 
velocity states. 



By substituting for V$ (equation 4) and Fezt (equation 5 )  
and using the substitution s = 8 within the equilibrium force 
equation 2, we arrive a t  the result: 

Hence by considering the total energy of a mobile, when un- 
der the influence of an artificial potential field, we have arrived 
a t  a possible control law, namely that the desired velocity sig- 
nal to the motors should be dependent upon both position and 
acceleration feedback of the robot. 

We note also that if a motor produces a torque T = TMX 
where T is the radius of the driving wheels and M the mass of 
the vehicle carried by each wheel, then: 

Equation 7 shows that if torque control is preferred, then the 
desired torque signal to the motors should depend upon both 
the position and velocity of the robot. 

3 Stability and Convergence 

A natural progression on the “possible control law”, given in 
equation 6, is t o  pose the question: “Can we guarantee stability 
and hence convergence of the mobile t o  the desired position 
vector X d  ?” From equations 1 and 3 we can write an expression 
for the total energy of the mobile robot: 

so that its rate of change of energy is given by: 

q = - K 2 X T x  (9) 

Hence if the total energy of the mobile is used as a Lyapunou 
function [5], then we can guarantee global asymptotic stability 
of the mobile with respect to X d ,  provided the following condi- 
tions are met: 

1. Global Asymptotic Stability : 

The net force given by: 

hfX + K l ( X  - x d )  - V$Jv,,cp = - I ( z x  (10) 

is always in the direction of the equilibrium position 
X d  So that: 
The velocity vector x never reaches zero until x = X d .  

2 .  The loud minimum of $J is at x = x d .  Upon receipt of 
a single 360’ scan of the local environment accessible by 
the sensor’s infra-red light, we arrange that the attrac- 
tive force towards x d  plus the inertial force of the robot is 
always greater than the repulsive force, V$,,,p. We there- 
fore ensure that the target x d  is a true equilibrium point 
of $ as generated by the Hooke’s Law cost function and 
the sensor scan. 

The velocity signal x in equation 6 can assume any values, 
dictated by Xd, x and V$rep. In reality of course, a real vehicle 
cannot travel at any speed and will be limited to fU m/s say. 
We can take this into account, by replacing the linear anipli- 
fier having gain K I / K 2 ,  in equation 6 ,  with a non-linear ideal 
saturation with the same gain but saturation levels of *U. Ex- 
amination of equations 8 and 9 will reveal that the total energy 

is still positive definite and that the rate of increase of energy 
is still negative definite under the same conditions 1 and 2. 

4 Application to Real Vehicles 

The energy considerations used thus far have proved extremely 
useful in providing us with a proven globally asymptotically 
stable speed controller given in equation 6, provided conditions 1 
and 2 are adhered to. It has however provided no insight into the 
possible numerical values of K1 and h’2 (other than that they 
must both be positive). A quantitative analysis of conditions 
1 and 2 is necessary t o  provide these limiting values, and the 
dependence of condition 1 upon the robot’s motor dynamics will 
be shown here, whilst the quantitative application of condition 
2 is left until section 4.4. 

After forming the transfer functions for each vehicle (ie: 
transferring x into x ) ,  we will apply the known methods of clas- 
sical and non-linear control theory in order to find the limiting 
values for Iil and Kz. We will firstly determine the general 
relationship between K 1 ,  Kz and the distance q of the mobile 
robot from its target, a t  which a stable oscillation can occur. In 
section 4.2, we will use the general result in order to guarantee 
that no stable limit cycle can occur within a vehicle’s control 
system throughout its entire trajectory. This is necessary be- 
cause, as stated in condition l, the mobile’s velocity vector x 
must not reach zero until convergence. Hence oscillations about, 
or overshoot of, the equilibrium position would be undesirable. 

In [I] the general relationship between K 1 ,  I f 2  and q is used 
to purposely produce a small oscillation in order to create a 
“Self Oscillating Adaptive System” (S.0.A.S). Such a system 
presents a constant gain to slowly varying signals throughout 
the loop. This is a useful property since variations of the motor 
parameters occur with changes in time and temperature, mean- 
ing that changes in the gain of the driven process (the motor 
dynamics) result. [ I ]  shows that an S.0.A.S is capable of au- 
tomatically changing the gain presented to the slowly varying 
signals by the non-linearity, in order to maintain an overall con- 
stant loop gain, even if the process gain changes. By ensuring 
that the amplitude of the allowed oscillation is small enough, the 
motors will be unable to respond to it,  implying the possibility 
of an adaptive asymptotically stable system. 

Figure 1 shows the full control system derived so far, for any 
vehicle with its own speed controller and approximately linear 
motor dynamics. 
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Figure 1: A realistic control system for a permanent magnet d.c 
motor driven robot, under the influence of an artificial potential 
field. 

To simplify the analysis of the complete control system in 
figure 1, we replace the closed loop vehicle’s speed controller 
and dynamics with its open loop equivalent H ( s )  - ie: 
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where N ( s )  is a vehicle’s speed controller, D ( s )  its motor dy- 
namics and P is its velocity feedback gain. Figure.2 shows the 
resulting system. 

Figure 2: The resulting control system with a mobile robot’s 
speed controller and motor dynamics replaced by their open 
loop equivalent transfer function H ( s ) .  

It has become the general trend of many researchers to use 
mobile vehicles with on board proportional, integml, derivative 
(P.1.D) speed control systems. The assumption which then often 
follows is that any form of oscillation, overshoot or instability 
of a mobile vehicle, when in pursuit of a target, will not oc- 
cur. Low level control and so called ‘high level’ path planning 
has often been separated in this way, in an attempt to remove 
the burden of a mobile vehicle’s motor control theory from the 
researcher. We will show in the following sections that this as- 
sumption is only true under certain conditions, and that full 
P.1.D control is unnecessary for overall position control, as it 
does not allow faster convergence (ie: a steeper gradient within 
the non-linearity) of a mobile to its target. We will further 
show the necessary and sufficient conditions for stable, asymp- 

totic tracking of a target, to the level of generality of the speed 
controller N ( s )  being part or all of a P.1.D system. Results 
of experiments using one of Oxford’s vehicles under the overall 
position control system in figure 1 will be demonstrated. 

4.1 Describing Function Analysis 

We now analyse our system to show what quantitative effect 
condition 1 (page 5) provides. We will show that in order not 
to obtain a limit cycle within the system (ie: to stop oscillations 
of the vehicle about a position vector x) there is an upper limit 
on how large the gradient 3 of the linear region within the 
saturation may be. If this gradient is exceeded, an oscillation 
with a known amplitude and frequency will be observed as the 
vehicle performs oscillations about the equilibrium point. For 
each Oscillation performed, two reversals of the velocity vector x 
result meaning that condition 1 is violated. We will further show 
the effect of the inertial term within the feedback loop of figure 
2. This term allows us to increase the gradient $ almost to the 
limiting condition of the non-linearity becoming a perfect relay 
without observing oscillations, meaning that a mobile vehicle 
could theoretically track its target at  maximum speed until it is 
reached. This means that the non-linearity could almost supply 
the motors with time optimal bang bang control. 

Because the motor dynamics in our control loop are third 

order, phase plane analysis of the system response is not prac- 
tical. We therefore use the method of describing functions (51. 
As the difference in the desired signal Xd,  the output x and any 
disturbance produced by the on board sensor approaches the 
steady state (ie: the mobile moves towards convergence), there 
will be other signals superimposed onto any stable limit cycle 
oscillations. Therefore the signals appearing at the input of the 
non-linearity will be of the form: 

w(t )  = a sinwt + q(t)  

where asinwt denotes the limit cycle oscillation and q( t )  rep- 
resents the superimposed signals. Since q( t )  will primarily be 
caused by the error signal (Xd - x), we assume that it varies 
much slower than sinwt and that it is smaller in magnitude 
than a which is certainly true near the steady state (when the 
oscillations occur) as the model and process outputs are similar. 
Since q(t)  varies slowly we approximate it by a constant in the 
above equation, so that: 

(12) 

w ( t )  FZ a sin wt  + q (13) 

If such a signal existed within our system, then the output of 
the non-linear saturation would appear as in figure 3b. 

-1 
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Figure 3: Output waveform produced by the non-linear satura- 
tion in response to the signal w ( t )  = a sin wt + q for a > + q. 

The output waveform can be represented as a Fourier Series: 

z( t )  = NO t n1 sin(wt t 4) + n2 sin(2wt t 4) t n3 sin(3wt t 4) t ... 
The non-linearity presents different transfer properties to 

the oscillation asinwt and the ‘d.c signal’ q. To consider the 
transmission of both signals through the saturation the dual in- 
put describing function method is necessary 131. The describing 
function with which we replace the non-linearity, when consid- 
ering oscillations, is given by: 

(14) 

K 
F(0)  = --[sin-’ 0 + sin-’ TO + z ( c o s ( s i n - ’  0) 

(U - K q )  
+cos(sin-’ TO))] x (cos(sin-’(:)) + j : )  (15) 

which is expressed in terms of the variables a and 0, where 
0 = (U - K q ) / K a ,  K = e and T = ( U  + K q ) / ( U  - K q ) ,  
in order to simplify the analysis. Under the assumptions made 
earlier, q / a  is small so that we assume F(0)  and hence F(a) to 
be approximately real valued. 

For the “slowly” varying signal, the gain presented by the 
non-linearity is approximately given by the dual input describ- 
ing function: 

F ’ =  ??! (16) 
q 

where No is the d.c value of t ( t )  in figure 3. 
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4.2 Avoiding Limit Cycles 

In order t o  avoid a limit cycle during the complete trajectory of 
a mobile vehicle the condition: 

must be obeyed for all values of q as q + 0 (ie: the robot 
converges). 

In equation 17, I G(jw0)  1 represents the gain of the closed 
loop system (not including the non-linearity) a t  the possible 
oscillation frequency W O ,  ie: in figure 2: 

M 
K i  

G(jwo) = R ( j w o ) [ l  - -w3  

4.3 Experimental Results 

Experimental results using Oxford's smallest mobile vehicle pro- 
duced interesting results. The speed controller on the vehicle 
is an integral one, and the application of equation 17 gives a 
condition on K1 and I(:, as q + 0: 

(KI - A )  < BK2 (19) 

where A and B are positive constants. It can be seen from the 
equation that it is theoretically possible to allow K2 to approach 
zero (although equation 5 shows that for constant energy dissi- 
pation K2 > 0), allowing K I / K ~  t o  become large, almost to the 
limiting condition of the non-linearity becoming a perfect relay. 
It is also interesting to note that if the inertial term were not 
present within the feedback loop of figure 1 (ie: simple position 
feedback only were used), equation 19 would be of the form: 

K1 < BK:, (20) 

for no oscillations. The effect of the acceleration feedback, de- 
rived from the energy considerations, is clear since it allows a 
much higher loop gain, and hence faster tracking of the input 
vectors xd. Figures 4 to 6 show curves of the angle 19 of the 
mobile robot within a plane coordinate system, as it tracks a 
constant input vector xd, versus time. For Eric, the motoring 
parameters show that if an oscillation results, its frequency is 
constant and the above analysis yields a value WO x 5.1 Hz. 
In figure 4, K1 and K z  are allowed to violate equation 19. An 
oscillation occurs a t  q = 0.025 radians at a frequency of 4.4 Hz 
and an amplitude of 0.030 radians. By decreasing the gradient 
K , / K 2  so that i t  obeys equation 19, figure 5 results. By de- 
creasing K2 significantly to just above zero, K1 is slightly larger 
than A, so that we allow more acceleration feedback. Hence 
figure 6 shows the effect of K1/K: ,  being equal to that in figure 
4 so that the overall loop gain is the same, but the individual 
values of K 1  and K z  now obey equation 19. 

4.4 Steady State Analysis 

Provided we avoid limit cycles by invoking the above conditions, 
Lyapunov's theory indicates asymptotic tracking of target vec- 
tors X d .  w e  now apply steady state analysis t o  the control 
system of figure 2 to discover the type of input necessary (ie: 
steps, ramps etc) to yield zero steady state error. 

In the steady state, when the transient behaviour of the error 

Figure 4: A gain of 1200 within the linear region of the satura- 
tion causes an oscillation, because the constant K1 set to 1200 
greatly attenuates the acceleration feedback. 

Figure 5: A gain of 500 within the linear region of the saturation 
causes no oscillation, since both A', and h2 obey the above 
condition. 

0.7 4 

6: A gain of 1200 within the linear region of the satura- 
ion causes no oscillation, since both Ii1 and Kz obey the above 
:ondi tion. 
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signal e has decayed, we can assume e to be small enough such 
that the saturation is operating within its linear region. From 
figure 2: 

x = H(s)-e 

and when the disturbance caused by the repulsive force field, 
VqjTep is zero: 

e = xd- ( 1  +-)s2x 

(19) 
Ki 
K2 

(20) 
M 
K l  

Therefore: 

If we let Xd be a step input, which in the s domain is given 
by: 

S (22) 
E 

xd = - 
where E is the magnitude of the step, then the steady state 
error eSS is given by: 

Hence we can design an algorithm which can inject values 
for target positions Xd which the mobile is to pursue. Provided 
these inputs take the form of steps, we are guaranteed that zero 
steady state error will result, meaning that the target will be 
reached. 

4.4 Conditioning the Repulsive Field 

In accordance with condition 2, we need t o  determine a value 
for the attractive force field constant K 1  in order to limit the 
overall effect of the repulsive force field. Figure 1 shows that 
the repulsive input to the control system is attenuated by the 
constant t. 

The theoretical worst case repulsion possible upon our mo- 
bile vehicle is shown by the specific environmental condition in 
figure 7. 

If a mobile were to position itself at the goal G within the 
environment shown in figure 7, its repulsive force field against its 
direction of motion would be a t  its maximum. This is because 
there is no scenery behind the robot to 'repel' it in its direction 
of motion. 

Upon completion of a 360' scan of the environment, the on 
board sensor at position G in figure 7 will provide an estimate 
of VqjreP given by: 

where 7 = sensor incrementing angle, R is the smallest allowable 
distance between the centre of the robot and a point in the 
environment as shown in figure 7 and i is an integer. 

By allowing only this maximum repulsive effect to exactly 
cancel the overall attraction of the mobile to its target, we ful- 
fill condition 2 since a reversal of the vehicle's velocity is not 
possible. We therefore equate the repulsive input in figure 1 to 
the maximum value of Xd - ( 1  + %s2)x which will just cause 
saturation at the non-linearity. It can be seen from figure 3 that 
the input value necessary to just cause saturation is: 

(22) 
UK2 Input a t  saturation = - 
Ki 

so that the above condition is given by: 

so that: 

Equations 24 and 17 provide the necessary conditions for 
global, asymptotic stability of the vehicle with respect to an 
equilibrium point xd. They further guarantee that no local 
minima will be generated since the repulsive component of the 
artificial potential field has been conditioned as above. This 

--Mobile robot 

f R + t  I Direction ofmorion 

Figure 7: A mobile robot in a position of maximum repulsion 
from the repulsive component of the artificial potential field. 
The environment provides repulsion only in a direction opposing 
the motion of the vehicle. 

indicates the necessity for an algorithm that will produce sub- 
goals for the mobile to pursue. I t  is a further requirement that 
these subgoals are placed in safe and reachable positions, as 
we no longer rely upon the repulsive force field for navigation 
but allow it to influence our control system in order to produce 
smooth paths for the mobile. (2) shows a method for producing 
such subgoals. 

5 Conclusions 

In the past researchers have often treated motion planning and 
control as separate aspects. In this paper we have presented 
a unified approach to navigation and control in the form of a 
proven globally asymptotically stable system, which forces a 
mobile to track changing targets. 

We have further shown a method for overcoming minima 
within a potential field, provided a goal relocation algorithm is 
used to provide sub-targets for a mobile to pursue. An estimate 
of an artificial potential repulsive field is incorporated directly 
into the mobile's control system, and is provided by an on board 
infra red time of flight sensor. The mobile test bed used in 
the experiments is shown in figure 8, carrying such a sensor 
developed at Oxford. In the near future we intend to apply 
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Figure 8: Eric: One of Oxford’s mobile robots carrying an infra 
red time of flight sensor. 

the above techniques to other larger vehicles within the lab, in 
order to study the effect of non-linear motor dynamics upon the 
proposed navigation strategy. 
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