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Abstvact- 
Mobile robotics has been labelled as a subject which has 

promised so much but produced so little. In response t o  
this we present here various research and development is- 
sues which we are addressing in order t o  realise an internal 
post distributing mobile robot. To realise this application 
we have implemented a behavioural control system which 
is capable of recognising scenes within a known envaron- 
ment.  The behaviours are defined as sensor data fueled 
algorithms capable of dealing with both expected and unex- 
pected situations. 

A n  algorithm for localising the mobile robot in the pre- 
sence of uncertain odometric information is also presen- 
ted. By  tracking predicted features f rom the environment 
with a sonar range sensor, we show that the position of the 
vehicle can be accurately estimated whilst simultaneously 
building a map of the environment. 

W e  also present some mechanical concepts which we 
have considered f o r  the distribution of posi itself within 
an indoor environment. 

I. INTRODUCTION 

We present here various issues which we are addressing in 
order to develop a mobile robot that can be viewed as part 
of the logistical services of large buildings such as office 
blocks, hospitals or factory floors. The term logistical 
services is used here in the context of distribution, cleaning 
and similar services. 

As a benchmark problem for the mobile robot project, 
we have chosen the task of mail distribution within a new 
building at the ETH, Zurich. In this building there will 
be several separate departments each requiring separate 
internal mail distribution. Currently, mail distribution 
for the various departments a t  the ETH is done manually. 
The project has the potential to save many man hours in 
terms of collecting and distributing post. 

To realise this mobile robot application, we are cur- 
rently addressing several fundamental mobile robot rese- 

arch problems. We describe here three particular areas 
that we have addressed, namely the overall control struc- 
ture of the mobile system; a trajectory following control 
algorithm which generates smooth paths for the mobile ro- 
bot to follow and an algorithm which at present manipula- 
tes ultrasonic range data in order to  track environmental 
features (corners, walls) in order to update the position of 
the mobile robot. 

In section 11. we present a mobile robot control system 
which manipulates two dimensional range data (ultraso- 
nic and optical [12]) in order to  recognise “situations” for 
the mobile robot. We define a situation as a recognised 
scene within an environment, meaning that some kind of 
preplanned action can be taken. Recognised situations 
are then used as a basis to provide a certain “behavi- 
our” (a particular algorithm competent in handling the 
“situation”) for the mobile robot, under a neural network 
decision making algorithm. Results using this technique 
in indoor environments are shown in the form of planned 
paths of the mobile robot. 

Planned paths provided by the decision making algo- 
rithm are passed to the “trajectory following controller”, 
results of which are shown in section 111. We show that the 
steering angle and front wheel velocity of the mobile robot 
can be modelled as a non-linear feedback controller. By 
analysing t,he motion of the robot under such a non-linear 
control scheme, smooth trajectories can be achieved. 

As the mobile robot follows its desired trajectories, it is 
essential that it  can update its position reliably and accu- 
rately. In section IV. we offer a solution to this localisa- 
t ion problem which, at present, manipulates two dimensie 
nal ultrasonic range data. The algorithm extracts certain 
features from an indoor environment (corners, walls) and 
keeps track of them as the mobile robot moves. We show 
in this section that positional errors caused by odometric 
estimates can be compensated for as the algorithm gene- 
rates an optimal state estimate of the robot’s position, 
after each scan of the environment, and further quantifies 
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the probabilistic certainty of this estimate. 
Finally in section V. we show some of the mechani- 

cal considerations which we are using in order to realise 
our particular application. To deliver internal post as ef- 
ficiently as possible, the mobile robot needs to be able to 
receive, transport and deliver as much post as possible for 
the given size of the robot. In this section, a mechanism 
is presented for achieving this aim. 

11. MOBILE ROBOT CONTROL STRUCTURE 

When the operating environment of the robot is known, 
global planning can be realised using a graph search algo- 
rithm [4]. Most of these graphs contain only information 
on specific positions in the building [7, 9, 101. 

A graph search algorithm, such as A*, selects the nodes 
to be visited and the robot traverses them using a na- 
vigation algorithm. We propose to use available, apriori 
information about the building as much as possible in- 
cluding information which can be delivered by the user. 
For this purpose we interpret the graph nodes as path 
segments and save all available information which charac- 
terise the path segments in the graph nodes. This allows 
us to define the behaviour as well as the reactions of the 
robot while traversing this segment. Thus the possible 
algorithms to be applied on a single path segment are de- 
fined by the user. Operating on such a graph, the global 
planner generates a list of intermediate “path segments” 
to be visited to reach a goal state. The local planner takes 
the next “path segment” from the list and tries to reach 
it using the information associated with this list element. 
An overview of this structure including the local planner 
is shown in figure 1. 

A path segment contains its start and end coordinates, 
the standard behaviour on the path and the reflex be- 
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Figure 1: Control structure of the mail distributing robot 

Exact positioning (e.g. in front of the post-station 
to get the post). 

Loading / unloading the post. 

0 Using the elevator. 

The reflex behaviours are needed to select an algorithm 
in case of exceptions such as obstacles in the path. Four 
of the main reflex behaviours are: 

0 Trying to avoid an obstacle. 
haviour for exceptional cases (obstacles). The positional 
information can be defined in absolute world coordinates. 
It can also be a sensor defined position, this means, some 

0 Not trying to avoid an obstacle (e.g. in a narrow 
corridor); 

sensor data has to be detected at the specified position 
(e.g. information from passive sensors (see section IV,. 
or a particular scene to be detected from the optical sy- 
stem). It is also possible to use a combination of these. 
The standard behaviours will be: 

0 Following the right wall. 

0 Following the left wall. 

0 Driving in the middle of the corridor. 

0 Driving “blind” along a virtual trajectory (useful in 
larger rooms where little sensor data is available). 

Just wait until the obstacle disappears (only possi- 
ble for moving objects). 

0 Use an alternative path. 

The appropriate standard or reflex behaviour is selected 
by the situation based behaviour selector, this process is 
shown in figure 2. 

A .  Situation based behaviour selector 
The situation based behaviour selector is responsible for 
scheduling the appropriate controllers as indicated by the 
information contained in the path segment data packet 
and the current sensor data. A first prototype of the be- 
haviour selector has been realised with a neural network 
based decision mechanism known as “RuleNet” [ll]. For Passing through a door or entering an office. 
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drive in the middle 

I -- - - 
Figure 2: The situation based behaviour selector, associa- 
ted behaviours on the right and input information on the 
left. 

this purpose, the network has been trained with a subset 
of the laser scanner range data as input (9 inputs) and 
the appropriate behaviour as desired output. The infor- 
mation from the global planner about the behaviour and 
the reflex for the path segments were ignored. After trai- 
ning the network with 659 randomly generated examples 
it was tested on 346 newly generated examples. The net- 
work was able to recognise all training examples correctly. 
On the tested examples its success rate was 89.6%. The 
network w a  therefore able to recognise most of the situa- 
tions correctly and select the appropriate controller. 

An analysis of the training examples has shown that 
the distinction of the situations based only on features 
stemming from sensor data is very difficult as only small 
changes in the input data lead to significant changes in 
the outputs. This makes a classification based on the ap- 
proximation of the pattern clusters with geometrical pri- 
mitives very difficult. Therefore preprocessing the sensor 
data to produce useful qualitative information is necessary 
to achieve better results. The controllers of the behavi- 
ours take the sensor information and the path segment 
data packet to navigate the mobile robot. The sensor in- 
formation is delivered from the sensor data interpretation 
module. Separate preprocessing of the sensor data makes 
the navigation algorithm independent of the robot’s sen- 
sors. For example a controller for wall following needs 
the distance to the wall and the orientation of the robot 
to the wall. This reduced information leads to efficient 
controller algorithms because the relevant information is 
reduced to two values and is directly accessible. The pre- 
processing of the sensor data usually has the effect that 
similar inputs demand similar navigation steps, so any 
classification algorithms, including neural networks and 
fuzzy control algorithms can be used efficiently. Another 
advantage of the preprocessing is that the algorithm can 

be used on different robots with different sensors. The 
only part that must be changed is the preprocessing of 
the raw sensor data to extract the relevant information 
for the navigation algorithm. As the controllers are to- 
tally independent of each other it is possible to  change 
or optimise a particular behaviour without affecting the 
others. It is also easy to  add new behaviour modules to 
the system. Only the behaviour selector module has to be 
extended and the user can introduce this new behaviour in 
the path segments of the global planner. All the existing 
behaviour modules are not influenced by this extension. 
On the other hand, if one single module has to handle se- 
veral behaviours, optimising one behaviour often has an 
uncontrollable influence on other behaviours. 

The behaviours are implemented as separate proces- 
ses within the multitasking real-time system XOberon [2] 
using different control methods such as neural, fuzzy, and 
classical control techniques. An example run of the mobile 
robot controlled by the above described control scheme is 
illustrated in figure 3. 

G 1 
Figure 3: Performance of the robot control scheme. Bet- 
ween the starl point S and point A and between B and 
G the behaviour Ytrajectory control‘was used. Between A 
and B the refiez behaviour “obstacle avoidance” was used. 

111. TRAJECTORY FOLLOWING CONTROL 

As described above it is also desirable to follow virtual 
trajectories, for instance when moving across a large open 
space. We have implemented a behaviour for following vir- 
tual trajectories as a non linear feedback controller. Con- 
sider the robot relative to the path segment as in figure 4 
below. 

The coordinates of the new position is provided by the 
global planner along with the information that this be- 
haviour should be utilised. The virtual trajectory is a 
straight line from the last co-ordinate visited (old posi- 
tion) to the next coordinate to be achieved (next posi- 
tion). The goal of the behaviour is to keep the robot on 
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Figure 6: Performance’ of the controller implementing 
equations 1 and 2 when moving onto a new path segment 
with a 450 rotation relative to  the last segment. 

(01 

Figure 4: Mobile robot parameters shown relative to  its 
virtual trajectory 

which brings the mobile robot back on to track in a smooth 
curve. Note that the maximum deviation from the desired 
path in this case is approximately 15 cm. 

this trajectory. The behaviour is then implemented as a 
feedback control law according to equations 1 and 2. 

A = - tan-’ (?) 

Where X is the steering angle and w is the front wheel 
velocity. The steering angle and front wheel velocity are 
then achieved using two separate single input single out- 
put (SISO) controllers, the performance of which are des- 
cribed in [12]. A block diagram showing the operation of 
the control system is shown in figure 5. 

[x. y. Blworld 

Figure 5 :  Dajectory controller block diagram showing in- 
ner  steering angle and wheel velocity controllers. 

The parameters for a stable controller can be chosen 
and an actual run with the mobile robot utilising such 
a controller is depicted in figure 6.  The two solid lines 
show the desired trajectory, as output from the situation 
based behaviour selector. The control system in figure 
5 produces the smooth path shown by the dashed line, 

Iv. LOCALISATION OF THE MOBILE ROBOT 
As the mobile robot follows its given trajectories, it is 
essential for accurate navigation that it can update its 
position at all times. The problems of relying solely upon 
the odometry are well documented [8] and we will show 
here that wheel slippage, uneven floor surfaces and inac- 
curate calibration cause the positional uncertainty to grow 
indefinitely when using only odometry. 

Following the work by Leonard [6] we describe here our 
results of using an approach to mobile robot navigation 
that unifies the problems of obstacle detection, position 
estimation and map building in a common multi-target 
tracking framework. 

As the mobile robot moves it continuously tracks na- 
turally occurring indoor targets or “beacons”. Predic- 
ted targets (found from the known environmental map) 
are tracked in order to update the position of the ve- 
hicle. Newly observed targets (those not predicted) are 
caused by unknown environmental features or obstacles 
from which new tracks are initiated, classified and even- 
tually integrated into the map. 

We have implemented the above technique, at  present 
using real sonar data. We note that a good sensor model is 
crucial for this work and in order to predict our expected 
observations (from the sonar data) we use the sonar model 
presented by Kuc and Siege1 (31. 

Figure 7 shows regions of constant depth (RCD’s) which 
have been extracted from 15 sonar scans recorded from 
each cross (x)  [5]. The model from Leonard’s work sug- 
gests that RCD’s such as those recorded at  the positi- 
ons marked A in the figure correspond to planar surfaces; 
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covariance matrix of the Kalman filter) based upon the 
previous estimates, the control input and the new beacon 
observations. The mathematical model for this algorithm 
is given in [SI. 

Figure 8 shows the results from the Kalman filtering 
algorithm using the single corner beacon marked ‘C’ in 
figure 7. The vertical crosses (+) show the true positi- 
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Figure 7: Regions of constant depth (RCD ’s) extracted 
f rom 15 sonar range scans. Note the motion of the RCD’s 
at plane surfaces (marked as A )  and corners (marked as 
BJ 

RCD’s marked B rotate about a point corresponding to a 
90° corner and RCD’s such as C which cannot be matched 
correspond to multiple reflections of the ultrasonic wave. 

A .  Position Updating 

The position of the mobile robot is estimated under the 
framework of an extended Kalman filter algorithm [l]. 
The algorithm requires two models: 

1. A plant model which describes how the vehicle’s po- 
sition changes with discrete time in response to a 
control input (from the trajectory controller) and a 
random noise disturbance. 

2. A measurement model which mathematically ex- 
presses a sensor measurement in terms of the ve- 
hicle’s position and the geometry of the beacon 
being observed. 

The aim of the algorithm is to continually produce esti- 
mates of the position of the robot (the estimated states of 
the Kalman filter) and the associated variances (the error 

Y 0  
8 

x 

X 
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Figure 8: True, odometric and estimated positions of the 
mobile robot using a single corner beacon for localisation. 

ons of the mobile robot as measured manually. The dia- 
gonal crosses (x)  show the positions estimated from the 
vehicle’s odometric system. Note that there is a syste- 
matic error between the true and odometrically measured 
positions. The stars (*) represent the estimated positi- 
ons output from the extended Kalman filter algorithm. 
Centred upon each estimate is a ‘certainty ellipse’ which 
is known to contain the actual position of the robot with 
some constant probability. The ellipses have as minor and 
major axes the eigenvalues of the Kalman error covariance 
matrix and are drawn in the directions of the eigenvectors 
of the error covariance matrix [l]. Note that during the 
first 5 scans (recorded at true points 1 to 5 in figure 8) 
the corner beacon was not visible and therefore the Kal- 
man filter estimates correspond to the odometric estima- 
tes. Note also that the certainty ellipses grow from points 
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1 to 5 as our estimates of the vehicle position get worse 
since we have no observations. 

At position number 6 in figure 8, the corner beacon is 
observed and has been used to estimate the mobile robot’s 
position. Note that the estimated and true positions vir- 
tually coincide and the certainty ellipse has shrunk, as we 
are more confident in our position. Between positions 6 
and 11, the beacon is tracked by the algorithm and the 
certainty ellipses shrink further. The minor axis of each 
ellipse has an approximate direction along the line joining 
the sensor and the beacon. It is in this direction that we 
are most certain of the robot’s position. At position 12 
in figure 8, the beacon is lost (the robot has traversed the 
door and the corner is no longer visible). The effect on the 
positional estimates and certainties can be clearly seen. 

Figure 9 shows the same mobile robot run, this time 
localising from two sensed beacons, namely the wall be- 
acon at D and the wall at  E in figure 7. It can be seen 
7 1 I I I 1 1 

X 
X @ 12 

X 

tr 11 

+b 10 

x u g  

8 

x ’ h 7 6  5 

* * *  
X X 

X 
X 

4 3 2  - “ 3  
x x  

matched 
wall E 

1 

** 

malched wall D 

I I 1 I t 
1 2 3 4 5 6 7 

Figure 9: True, odometn’c and estimated positions of the 
mobile robot using two planar (wall) beacons for localisa- 
tion. 

that the algorithm is capable of producing highly accurate 
positional estimates of the robot and simultaneously buil- 
ding a map of its sensed environment as we become more 
confident of the nature of our features. 

v. P O S T  DISTRIBUTION - MECHANICAL CONCEPTS 

In order to address the application of post distribution we 
have considered various mechanical concepts capable of 
receiving, transporting and delivering post. Our present 
vehicle is 0.75m wide and 1.10m long and is to operate 
in a building with corridors 1.4m wide. It is therefore 
essential that the space on board the mobile robot is used 
as efFiciently as possible, so that the robot can deliver the 
maximum amount of post for its given size. 

The following possibilities were considered: 

1. A Robot manipulator arm and gripper to retrieve 
and collect the postal sacks. 

2. A sliding and lifting mechanism to retrieve and de- 
liver trays containing post from pigeon holes. 

3. A tilting and rolling mechanism which, upon 
docking, allows the trays carrying the post to roll 
onto the mobile robot’s transport system. 

The third option above has the advantages that nothing 
needs to protrude outside of the working space of the mo- 
bile robot (unlike both other options) and that the me- 
chanism itself can be simple, not requiring the use of high 
torque motors. Figure 10 shows the method to be used 
for transferring mail boxes from the central pigeon holes 
to the various departments within the building. 

VI. CONCLUSIONS 
We have presented here three of the research issues which 
we are currently addressing in order to realise an internal 
post distributing mobile robot. 

We have shown that a “situation based behaviour selec- 
tor” under the control of a neural network decision mecha- 
nism can provide a useful path planning technique. The 
mobile robot reacts to its environment with certain be- 
haviours or reflex behaviours depending upon the input 
sensor data. The results of injecting a desired trajectory 
into the mobile robot’s control system has also been de- 
monstrated. 

As the mobile robot moves it is capable of updating 
its position under an extended Kalman filtering algorithm 
using, at present, sonar range data. The algorithm is capa- 
ble of finding naturally occurring geometric beacons and 
tracking them as the mobile robot moves. As new bea- 
cons (from obstacles) are found (ie: not predicted) they 
cause new tracks to be initiated, classified and eventually 
integrated into the map. The results show that successful 
localisation and map building is possible using this algo- 
rithm. 

Finally we have outlined some of the mechanical con- 
cepts necessary to implement our application. The me- 
chanical system presented offers an efficient solution to 
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Figure 10: Mechanical concept for internal post transfer 
via the mobile robot. When the mobile robot has docked 
with the central pigeon hole point, the mail box in position 
1 is released and can slide onto the robot's transport me- 
chanism (position 2). After docking with the mail boxes 
(at each department) the tray is released from the mobile 
robot and can slide into position 9. 

internal mail distribution in terms of mobile robot space 
usage. 

The coordination and implementation of this work is 
currently under way in Zurich. 
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Figure 11: The mobile robot platform transporting the u1- 
trasonic scanning mechanism. 
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