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Abstract—The use of random finite set (RFS) in simultaneous
localization and mapping (SLAM) has many advantages over
the traditional random-vector-based approach. These include
the consideration of detection and clutter statistics and the
elimination of data association and map management heuristics
in the estimator. However, this same advantages mean that
knowledge of the detection and clutter statistics for the feature
detector used is required. This paper presents a principled
method to obtain these statistics for semantic features extracted
from laser range data. It also introduces a simple feature detector
for which the method is applied. Results from running an RFS
based SLAM algorithm show that it can perform on par with
state of a the art alternative and at a faster speed.

I. INTRODUCTION

SLAM is a problem in robotics in which a robot uses
its available sensor measurements to estimate a map of the
operating environment, while concurrently determining its
pose relative to the map. The general probabilistic approach
currently adopted by the mobile robotics community uses
random vectors to represent the robot and map state, and solves
SLAM through stochastic filtering, or batch estimation [3].
Recently, a different representation has been introduced for
feature-based maps using RFSs [15, 16], in which, random
vectors typically representing the spatial location of individual
landmarks are placed in a set, in which the cardinality (or size)
is also a random variable.

There are several benefits in using a RFS-based filtering
approach to estimate the map in SLAM compared to a vector-
based approach. Typically in vector-based approaches, data
association (or the correspondence between measurements and
landmarks) is performed separately from the actual filter, and
is determined using heuristics (e.g., by comparing the measure-
ment to landmark likelihood with a preset threshold). These
correspondences are required to determine which landmark
estimate is updated by a measurement. In contrast, under
an RFS SLAM framework, data association becomes a part
of the landmark estimate update process for which Bayes
theorem is applied. Essentially, the RFS approach updates
landmark estimates by simultaneously associating them with
every measurement, and does not rely on any heuristics in the
process. Another benefit of RFS-based filtering is that it can
account for detection statistics (i.e., the probability of detection
of landmarks, and the amount of clutter or outliers expected
from a sensor). Finally, the RFS approach not only estimates
the spatial position of landmarks, but also the number of

landmarks that have entered the field of view of the robot’s
sensors. This is because the cardinality of a RFS is also a
random variable that is estimated. This advantage also means
that these filters require the knowledge of said detection
statistics, a feat that is easily accomplished in simulations and
is backed by a well developed probabilistic theory in the case
of radar sensors. However, the most popular sensors used in
robotics (vision sensors and laser range finders) are typically
used with more complex higher level feature detectors, which
usually do not provide accompanying detection statistics.

Similar to vector-based filtering methods such as the
Kalman filter (KF), RFS-based filtering methods also stem
from the the recursive Bayesian filtering paradigm. A set
of mathematical tools called finite set statistics (FISST) was
developed by Mahler [10] for handling multi-target estimation
problems in which RFSs are used, and allows the application
of Bayesian estimation techniques for use with RFSs.

This paper proposes a method of obtaining the detection
statistics of a laser data feature extractor, and it’s use in a
RFS-SLAM implementation, known as Probability Hypoth-
esis Density (PHD)-SLAM. The contribution of this paper
is to demonstrate the implementation of PHD-SLAM with
commonly used, 2D scanning laser range finders, and the
importance of modelling sensor detection statistics in a prin-
cipled manner. A simple feature detection strategy will be
presented, in which the expected and variable probabilities of
detection associated with laser range data are derived. Results
of applying the laser based feature detector under a PHD-
SLAM framework will be presented and compared using the
same feature detector within a state of the art vector based
Multiple Hypothesis (MH)-SLAM framework.

II. RANDOM FINITE SET SLAM AND ITS REQUIREMENTS

In this section RFS-SLAM will be introduced and its
requirements of the detection statistics for the feature detector
will be demonstrated.

A. System Model

SLAM is a state estimation problem in which the best
estimate of the robot trajectory and map feature positions is
sought over time, using all sensor measurements. In general,
we can represent the underlying stochastic system using the



non-linear discrete-time equations:

xk = g(xk−1,uk−1, δk−1) (1)

zik = h(xk,m
j , εk) (2)

where
xk represents the robot pose at time-step k,
g is the robot motion model,
uk is the the odometry measurement at time-step k,
δk is the process noise at time-step k,
zikis the i-th measurement vector at time-step k,
h is the sensor-specific measurement model,
mj is a random vector for the position of landmark j,
εk is the spatial measurement noise

Traditional vector-based approaches to SLAM concatenate
random vectors for the robot and landmarks into a single
vector for the estimation process. Furthermore, the generally
complex data association problem needs to be solved so that
i and j correspond to the same landmark. Within the RFS
approach, the observed landmarks up to and including time-
step k, are defined as

Mk ≡ {m1,m2, ...,mm} (3)

where the number of landmarks, |Mk| = m, is also a random
variable. In general, the landmark from which a measurement
is generated is unknown. Furthermore, there is a probability of
detection, PD , associated with every landmark. Measurements
may also be clutter, generated from sensor noise or objects of
non-interest, with a known distribution. We define the set of
all n measurements at time-step k as:

Zk ≡ {z1k, z2k, ..., znk} (4)

Using a probabilistic framework and a filtering approach, we
seek the probability density function (PDF)

p (x0:k,Mk|Zk,u0:k) (5)

relative to the initial pose of the robot at every time-step.

B. Rao-Blackwellized (RB)-Probability Hypothesis Density
(PHD) SLAM

The posterior PDF (5) can be factored into the form:

p (x0:k|Zk,u0:k) p (Mk|x0:k,Zk,u0:k) (6)

This is the same approach taken in [12] such that the first
term in (6) is a conditional PDF on the robot trajectory and
sampled using particles. The second term in (6) is the density
of the map conditioned on the robot trajectory, which we
represent using a Gaussian mixture (GM). In the RFS-based
approach, we also assume that the map RFS has a multi-object
Poisson distribution1. This allows the PDF of the map RFS
to be approximated as a time varying intensity function, vk,

1This implies that features are independently and identically distributed,
while the number of features follow a Poisson distribution

represented as a GM:

vk =
∑
i

ω
[i]
k N

(
µ
[i]
k ,Σ

[i]
k

)
(7)

In contrast to the vector-based Rao-Blackwellized (RB)-
particle filter (PF) approach of using the Extended Kalman
filter (EKF) to update the Gaussians for individual landmarks,
a probability hypothesis density (PHD) filter is used instead
to update the map intensity function [15].

We will provide a brief overview of the main steps in
the RB-PHD filter, highlighting the importance of detection
statistics.

1) Particle Propagation: At time-step k, the particles rep-
resenting the prior distribution,

x
[i]
k−1 ∼ p (x0:k−1|Z1:k−1,u0:k−1) (8)

are propagated forward in time by sampling the motion noise,
δ
[i]
k , and using the motion model (1):

x
[i]
k = g(x

[i]
k−1,uk−1, δ

[i]
k−1) ∼ p (x0:k|Z1:k−1,u0:k−1) (9)

2) Generate Birth Gaussians: For each particle, its map
intensity from the previous update, vk−1, is added with |Zk−1|
new Gaussians with (an arbitrarily small) weight, ωB , accord-
ing to the PHD filter predictor equation:

v−k = v+k−1 +

|Zk−1|∑
i

ωBN
(
µ
[i]
k ,Σ

[i]
k

)
(10)

These new Gaussians created at time-step k represent
potential new landmarks in the map, with mean and
covariance,

(
µ
[i]
k ,Σ

[i]
k

)
. These are determined by using the

inverse measurement model from equation (2), i.e. mj =

h−1(xk, zk), with the previously updated pose x
[i]
k−1 , and

previous measurements, Zk−1.
3) Map Update: The map intensity for each particle is

updated with the latest measurements according to the PHD
filter corrector equation:

v+k = (1− PD)v−k +

|Zk|∑
i

N−
k∑
j

ωi,j
k N

(
µ
[i,j]
k ,Σ

[i,j]
k

)
(11)

where N−k is the number of Gaussians that compose v−k . Here
the first term is a copy of v−k with lowered weights to account
for the possibility of missed detections. The second term adds
a new Gaussian for each pair comprising a new measurement
and an existing Gaussian in the intensity map. In other words,
instead of determining data association based on heuristics,
we let the PHD filter determine how much a measurement
should influence a landmark estimate. This is carried out by
the weighting factor calculation:

ωi,j
k =

PDω
j
kq
(
zik, µ

[j]
k ,Σ

[j]
k

)
κ+

∑N−
k

l=1 PDωl
kq
(
zik, µ

[l]
k ,Σ

[l]
k

) (12)

where q() is the measurement likelihood given a feature esti-



mate, and κ is the clutter density. The mean and covariance for
each new Gaussian created from measurement i and landmark
j,
(
µ
[i,j]
k ,Σ

[i,j]
k

)
, are determined using the EKF update step

(Note that other variants of the Kalman filter (KF) would also
be possible).

4) Importance Weighting and Re-sampling: The weighting
and re-sampling of particles is the method used to update
the robot trajectory PDF after propagation (also known as the
proposal distribution). This is given by:

p (x0:k|Z1:k−1,u0:k−1) (13)

This has to to be updated to become a new PDF representing
the robot trajectory after measurement updates (or the target
distribution),

p (x0:k|Z1:k,u0:k−1) (14)

Bayes rule allows the weighting distribution in terms of (13)
and (14) to be expressed as:

p (x0:k|Z1:k−1,u0:k−1)

p (x0:k|Z1:k,u0:k−1)
= ηp (Zk|x0:k,Z1:k−1) (15)

in which η is a normalizing constant. Since (13) and (14) are
sampled using particles, the weighting distribution, define as
wk, is also sampled such that we calculate a weight for each
particle. To solve (15), we use Bayes Theorem to express it
as:

wk ≡ p (Zk|x0:k,Z1:k−1)

= p (Zk|Mk,x0:k)
p (Mk|Z1:k−1,x0:k)

p (Mk|Z1:k,x0:k)
(16)

Equation (16) can be solved because we assume the map RFS
is multi-object Poisson distributed. We note from (16) that the
choice of the map,Mk , for which we evaluate the expression
in its general form is theoretically arbitrary since the left-hand
side of (16) is independent of the map. This has led to multiple
solutions that adopt the empty-set strategy, the single-feature
strategy and multi-feature strategy in determining the particle
weight in (16). It was previously shown that the choice of
the map can have a significant effect on the performance of
the filter and that the performance multi-feature strategy is
superior to the others [7]. This is achieved at the cost of an
increased computational cost. We will use the multi-feature
strategy for this paper.

5) Merging and Pruning of the Map: Gaussians with small
weights are eliminated from the intensity function, while Gaus-
sians that are close to each other are merged together [14, 16]
This approximation is critical in limiting the computational
requirement of the RB-PHD filter.

Within the above five steps, the map update and particle
weighting steps both require the knowledge of both the prob-
ability of detection of the feature detector and the distribution
(PHD) for its false alarms. These important requirements are
the subject of the next section.

III. INFERRING DETECTION STATISTICS FOR SEMANTIC
FEATURES

A. Estimating a Feature’s Probability of Detection

Within the autonomous robotic navigation literature, feature
detection statistics are largely ignored, and the uncertainty is
considered to lie solely in the spatial domain, and typically
modelled as range and bearing uncertainties [3, 19]. This
implies that the probabilities of detection of features are
assumed to be unity, and the probabilities of false alarm are
assumed to be zero. In turn, it is then considered the task
of the external map management and association heuristics to
“deal” with false alarms and missed detections, before map
estimation takes place.

Within the tracking community, detection statistics are con-
sidered to be of prime importance, however object detection
probabilities are usually naively considered to be constant
during trials, despite the fact that the relative positions of
objects and the sensor, and any occlusions typically has a
large effect on that object’s detection probability [9]. Little
attention is given to the shape of a sensor’s field of view and
the possibility of partial or total object occlusion, and their
quantified effects on the expected detection statistics. In [6]
the laser scan is used to determine the field of view yet within
it the probability of detection is considered to be constant.
They also remove the requirement for an external feature
extractor by modelling the behaviour of the laser range sensor,
in which multiple measurements are produced by a single
”extended” feature. This number of measurements produced
by the feature is modelled as a Poisson RFS. The method to
calculate probabilities of detection proposed in this section can
be used in not only to calculate the value of PD of this feature
detector but also to estimate the mean of said RFS.

The aim of this section is to therefore provide a quantified
model of the probabilities of detection and false alarm, based
on laser range measurement models. This method does not use
any information on the feature detector itself and can therefore
be used with any feature detector that estimates both position
and shape of the object. This excludes line detectors that don’t
provide beginning and end points.

As shown in Figure 1, given an estimate of the robot’s
location and the location and other attributes, such as the
shape, of features (i.e. a SLAM estimate), the number of
laser range points that the feature is expected to return can be
estimated. This point estimation process is a sensor modelling
technique referred to as ray tracing in the robotics literature
[19]. Comparing estimated and measured distances, allows
expected feature estimates to be labelled as either occluded,
partially occluded or unoccluded. The number of estimated,
unoccluded points per feature determines the proportion of
the landmark that is in the field of view of the sensor. The
analysis in this section demonstrates that feature probabilities
of detection can be experimentally quantified based on this
number, via statistical analyses on laser range data sets.
Initially, a dataset is required from an environment where the
ground truth positions of features are known, via independent
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Fig. 1: Analysis of range data from a circular shaped feature.
Based on the SLAM state estimate, the laser range beams that
would hit the feature, if not occluded, can be determined (red
and yellow circles). Beams with range values several times the
range standard deviation shorter than expected (red points)
are discarded from the detection probability analysis. The
remaining (yellow) points are used to estimate the feature’s
probability of detection.

means. A simple way to achieve this is through the use of
features identifiable by humans - i.e. semantic features.

B. Estimating Probabilities of False Alarm

In the case of the probability of false alarm it is infeasible
to theoretically model every possible laser range scan that
does not contain a semantic feature of choice. Importantly,
the statistical representation of false alarms in the RB-RFS
implementation of SLAM is a Poisson random set, which
only requires an estimate of the expected number of false
alarms. In a manner similar to the probabilities of detection
outlined above, the statistical analysis of laser range based
data, known to not contain the chosen semantic features, can
yield an informative estimate of the probability of false alarm.

IV. LASER BASED FEATURES AND THEIR DETECTION
STATISTICS

This section provides a brief overview of the main feature
detection algorithms applied to laser range data and, at the
same time, high lights the publicized problems in their appli-
cation to data sets in which chosen feature types yield few
data points per scan. It will then present a simple circular
feature detector, which can be applied in outdoor scenarios in
which approximately circular cross-sectioned features such as
trees, pillars and lamp posts are abundant. This circular feature
detector is an extension of that proposed by Durrant-Whyte et
al [2].

A. Why Semantic Features?

Since laser range finders yield range decisions, it should be
possible to incorporate all of these into a SLAM estimation
algorithm. Various mapping algorithms achieve this, via scan
matching techniques [8], although these techniques typically
require good initial estimated robot pose to scan alignment
estimates for them to function correctly.

The reasons why most SLAM algorithms do not attempt to
process every laser range value are as follows. Firstly, contrary
to many radar and sonar devices, commercially available laser

range finders usually internally process the received power
values to provide range decisions at distinct bearing angles,
instead of outputting the entire received power array (a-
scope) at predefined range increments. This means that the
device makes its own hypothesis test on a per a-scope basis,
and provides only the final decision of this test, yielding a
single range decision. Under favorable operating conditions,
these range decisions typically correspond well with the true
distances to objects, however they are still prone to the
problems of false alarms and missed detections under sub-
optimal target/environmental conditions. Secondly, because of
the high angular resolution of laser range finders, they usually
provide the user with a multitude of range decisions, far in
excess of which most SLAM algorithms can process.

These two facts have advocated the compression of laser
range data into so called high level, and typically semantic,
features. This is to minimize the negative impact of individual
false alarms and missed detections and simultaneously keep
SLAM input data levels manageable.

B. Current Laser Range Based Feature Detectors

Global detectors, such as RANSAC and the Hough trans-
form, have been applied to laser range data, mostly to extract
lines [17]. These methods have several advantages, such as
tolerance to partial occlusions, however they rely on many
feature inliers being available within the laser data sets.

In [18] Nuñez et al demonstrated a detector capable of
extracting both line segments and circular curves from a scan
using a curvature measure. The algorithm was designed to
work with indoor scans where circles are usually observed at
close range, from artifacts.

Other laser point based feature detectors include the recur-
sive split and merge algorithm[4] and Gauss-Newton extrac-
tion algorithm[20], among others.

Despite the varying degrees of mathematical rigor in state of
the art feature detection algorithms, global detectors have been
shown to not improve the results enough to compensate for
their increased computational complexity[17]. Durrant-Whyte
et al presented a simple detector which seeks clusters of
points and assigns a circle to represent these, with diameter
equal to the distance between the first and last points of the
cluster. To demonstrate the importance of estimating detection
statistics, and their integration into PHD-SLAM, the simple
circle detector of [2] will be extended in the next section,
for the robust detection of circular cross sectioned objects
including pillars, trees and lamp posts.

C. Detection of Circular Objects

The circle based detector of [2] is extended here by,
replacing it’s heuristic estimation of the circle parameters by a
non-linear optimization approach. Also an additional step has
been added to remove some of the false alarms produced by
the algorithm.

The detector works in 3 steps, clustering, circle fitting and
false alarm reduction.



1) Clustering: The first step of the algorithm is to segment
the laser scan in a set of simple clusters of closely spaced
points. To obtain these clusters the whole scan is iterated
in its natural order. If the Euclidean distance between two
consecutive points is greater than a threshold they define a
break between two different clusters.

2) Circle Fitting: A circle is fitted to each cluster by
minimizing the mean squared error of the fit as shown in
equation (17).

minimize
xc,yc,rc

∑
i

(
√

(xi − xc)2 + (yi − yc)2 − rc)2 (17)

Where (xc, yc, rc) is the center and radius of the circle and
(xi, yi) are the coordinates of each laser range point in the
cluster. This optimization problem is the same as the one
presented in [20] but is solved using the Levenberg-Marquardt
algorithm, which has been shown to be more robust than
the Gauss-Newton method[13]. To initialize the algorithm the
mean of the point positions is set as the circle center and the
radius is set as half the distance between the first and last
point.

3) False Alarm Reduction: At this stage every cluster has
an associated, fitted circle. Cluster pruning is then necessary,
in which clusters and their corresponding circles are removed
based on a detection theoretic, statistical analysis of their
parameters.

Each cluster is characterized by three parameters:
• Mean Squared Error for the circle fit (MSE)

MSE =
∑
i

(
√

(xi − xc)2 + (yi − yc)2 − rc)2 (18)

• Radius of the detected circle (rc)
• Convexity (C) of the circle.

This is a measure of the difference between the distance
from the robot to the center of the fitted circle and the
mean of the points (See Figure 2) and is given by

C =
√

(xr − xc)2 + (yr − yc)2

−

√√√√(xr −
1

n

n∑
i

xi)2 + (yr −
1

n

n∑
i

yi)2 (19)

To achieve false alarm reduction, based on the above pa-
rameters, concepts from detection theory can be applied [5].
Histograms representing correctly and falsely detected circular
features were generated with respect to each of the above
parameters. This required the generation of ground truth
information within a test area, containing the true centers and
radii of circular sectioned objects, such as trees. This test
area comprised a ground truth map of a park area near the
Universidad de Chile.

Naturally the generality of such an environment is ques-
tionable, in terms of the circular features contained within it.
However, since the SLAM experiments were to take place in
an environment containing a significant number of trees, this
environment was deemed sufficiently general. In general, if the
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Fig. 2: If the mean of the laser returns (red point) is further
away from the robot than the center of the estimated circle
(orange point) then the object does not form a convex circular
cross section with respect to the robot’s location.

sought features are based on any type of semantic information,
detectors for those semantics can be tuned in a similar manner,
using ground truth data sets from environments known to
contain a significant number of the type of feature sought.

Within the park environment, multiple 2D laser scans from
different positions were recorded and approximately manually
aligned to form an initialization for the Iterative Closest Point
[1] algorithm, which in turn generated a more exact alignment
of the data [8]. This resulted in a registered 2D point cloud
of the Park. Point clusters were then manually extracted and
compared to the actual environment to determine if they
corresponded to actual circular sectioned features. Based on
positive matches, the cluster centers and actual feature’s radii
(measured by hand) were noted. This resulted in a list of
circular feature (typically tree trunk) center coordinates and
their respective radii. ICP [1] also determined the position at
which each scan was recorded.

After the ground truth list was attained, the laser range
finder and circular feature detector were used to automati-
cally detect multiple circular sectioned features at multiple
locations based on the procedure outlined in Sections IV-C1
and IV-C2 within the test area. From the multiple detections,
the histograms in Figures 3, 4 and 5 were generated. These
histograms could be used directly to achieve the false alarm
reduction. From each histogram it is evident that the appli-
cation of appropriate, independent detection thresholds on the
MSE, radius and convexity measure could be applied so as to
reject the false alarms which correspond to feature parameters
outside of the bounds which contain the detections. However,
care is necessary before the application of such a simplistic
treatment, since any correlation between these parameters must
first be determined.

To determine such correlations, and appropriate methods to
discard some of the false alarms, standard techniques based
on Fisher’s linear discriminant [11] and a Hotelling ellipsoid
were compared.

Hotelling Ellipsoid Method
This method fits a confidence ellipsoid to the detected

circle’s parameters, as shown in Figure 6. This figure shows the
distribution of the three variables for the case of true detections
and a corresponding 99.9% confidence ellipsoid representing
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Fig. 3: The mean squared error can be used to remove some
of the false alarms.
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Fig. 4: Histogram for the detected radius. Note: The tail for
the false alarm distribution is very long and is not shown in
this figure.

a multivariate Normal distribution, based on the parametric
data points. The size of the ellipse can easily be determined
using the estimated covariance and the multivariate normal
distribution. The Hotelling Ellipsoidal method will reject any
measurement that falls outside of the ellipse. Examining the
experimental results we determined that for any given number
of false alarms the Hotelling Ellipsoidal method produced
more detections than the Fisher’s linear discriminant and was
therefore the method of choice in this work.

V. ON-LINE DETERMINATION OF DETECTION STATISTICS

In this section we will show the results of applying the
method described in section III to the detector presented in
section IV using the dataset generated when building the
ground truth map.

The proposed feature detector was run on the scans. By
using the known pose of the robot and landmark, we associated
every measurement to it’s closest feature, Measurements that
had no feature closer than 1[m] were deemed as false alarms.
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Fig. 5: Histogram for the Convexity measure. Note: The tails
for the false alarm distribution are very long and are not shown
in this figure.

Fig. 6: A Gaussian approximation of the detections can be
used to generate an ellipse to remove a lot of false alarm and
keep most of the detections.

With this data we determined the probability of detection
of the algorithm conditioned on the number of unoccluded
points. First the expected number of unoccluded points was
calculated for every pose feature pair. By determining the ratio
of detections to the total number of times that this specific
number of unoccluded points was calculated we obtained the
probability of detection for each .

As can be seen in Table I the probability of detecting
a tree is highly dependant on the number of unoccluded
points. It should be noted that there are less instances where
the number of onuccluded points was high, so for higher
number of unoccluded points the variance of the estimated
PD will be higher. In the implementation of the RFS-SLAM
we replaced the probabilities that were lower than 10% to zero
and when more than 6 points were not occluded we replaced
that probability with that of six points.

Determining the distribution of false alarms is much easier
since we are not interested in modelling spacial variations
on its distribution. Therefore we only need to estimate the
distribution for the number of false alarms per laser scan
without using the estimates of the map. For this the false alarm



Number of unoccluded points Pd
0 0.0014 (383/273025)
1 0.0244 (1514/62025)
2 0.0696 (1990/28582)
3 0.3595 (6983/19423)
4 0.7562 (7845/10374)
5 0.8854 (6118/6909)
6 0.8987 (3761/4185)
7 0.7824 (2078/2656)
8 0.7607 (1068/1404)
9 0.7679 (870/1133)

TABLE I: The number of unoccluded points greatly influences
the probability of detection. The amount of detections and
instances were specific number of points was expected is
shown in brackets.

histogram is showed in figure 7 and a Poisson distribution is
fitted to the data. Although we are bound to this distribution
by the assumptions made by the PHD filter we note that the
histogram is roughly similar to it.The average number of false
alarms per laser scan estimated was:

E(NFA) = 9.27 (20)
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Fig. 7: Histogram for the false alarms. A Poisson distribution
is fitted to the data.

VI. PHD FILTER RESULTS

In this section the results from running both RB-PHD-
SLAM and multi-hypothesis (MH)-factorized solution to
(FAST)-SLAM on a park dataset will be shown and the
differences will be indicated. The robotic platform used was a
Clearpath Husky A-200 robot equipped with a Sick LD-LRS-
1000 laser range finder. The Husky’s wheel encoders provided
odometry measurements. The robot was run in the same park
environment used to determine the detection statistics. A GPS
device was also used but the tracks proved to be less accurate
than any of the estimates generated by the algorithms. GPS
tracks are therefore not shown in any of the figures.

Both algorithms were run using the probability of detection
proposed in this paper. In figures 8a and 8b the results
from running the RB-PHD-SLAM and MH-FAST-SLAM can
be seen respectively. Both algorithms performed similarly
trajectory-wise. The map estimate generated by MH-FAST-
SLAM includes more of the real landmarks, but at the same
time it includes some clutter-generated landmarks.

A constant probability of detection within a circular field
of view with a radius of 40 meters was also used. The
results can be seen in figures 8c and 8d. The trajectory
estimated by MH-FAST-SLAM stays almost the same. On
the contrary the performance of RB-PHD-SLAM is lowered
when using a constant PD. The quality of the map estimates
produced by both algorithms is significantly lowered by using
a constant PD. The mismatch between the real and estimated
probabilities of detection makes it so that when features go
out of the field of view they get removed from the map. In all
experiments RB-PHD-SLAM ran roughly 40% faster.

VII. CONCLUSIONS

This paper introduced a method to obtain detection statistics
for semantic features in laser scans.The method presented can
be used with any feature detector that estimates de shape of the
object. Using this method we where able to get these statistics
for a new circle detector that we created. The detection
statistics obtained where used to run the RB-PHD-Filter in a
park environment. The results showed that the RB-PHD-Filter
performs similarly to MH-FastSLAM and at a higher speed.
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