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Abstract—The simultaneous localization and mapping (SLAM)
problem in mobile robotics has traditionally been formulated
using random vectors. Alternatively, random finite sets (RFSs)
can be used in the formulation, which incorporates non-heursitic-
based data association and detection statistics within an estimator
that provides both spatial and cardinality estimates of landmarks.
This paper mathematically shows that the two formulations are
actually closely related, and that RFS SLAM can be viewed as
a generalization of vector-based SLAM. Under a set of ideal
detection conditions, the two methods are equivalent. This is
validated by using simulations and real experimental data, by
comparing principled realizations of the two formulations.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a prob-
lem in robotics in which a robot uses its available sensor
measurements to estimate a map of the operating environment,
while concurrently estimating its pose relative to the map.
The general probabilistic approach currently adopted by the
mobile robotics community uses random vectors to represent
the robot and map state, and solves for SLAM solution
through stochastic filtering, or batch estimation [1]. Recently,
a random finite set (RFS) formulation was introduced for
feature-based maps [2], where random vectors representing
landmark spatial estimates are placed in a set in which the
cardinality (or size) is a random variable. The map update
process in RFS-based filters, such as those in [2, 3, 4, 5], may
appear vastly different compared to vector-based approaches.
However, there is actually a close relationship between the
two SLAM formulations. The objective of this paper is to
uncover this relationship, and show the conditions under which
RFS SLAM reduces to random-vector SLAM. Furthermore, it
explains why random vector formulations tend to fail in high-
clutter conditions while RFS SLAM is able to operate robustly.

Similar to vector-based filtering methods such as the
Kalman filter (KF), RFS-based filtering methods also stem
from the the recursive Bayesian filtering paradigm. A set
of mathematical tools called finite set statistics (FISST) was
developed by Mahler [6], which include the definitions for
set integrals and derivatives, and allows the application of
Bayes estimation techniques for use with RFSs. Aside from
the benefit of estimating the number of landmarks that have
entered the robot’s field of view (FOV), RFS SLAM does
not require heuristic-based data association (i.e., determining
the correspondences between landmarks and measurements),
and is able to incorporate detection statistics (i.e., probabilities
of detection and clutter intensity) within the estimator. This
paper will show that given the restrictive conditions of having
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Fig. 1: The Clearpath Husky A200 robot used for dataset
collection. It was equipped with a SICK LD-LRS-1000 lidar.

a deterministic map size, perfect detection probabilities, and
the absence of false measurements, RFS SLAM reduces to a
random-vector SLAM formulation. The paper is organized as
follows: The vector-based and RFS-based SLAM formulations
will first be presented in Section II. Section III will show how
RFS SLAM is a generalization of vector-based SLAM. This
claim is validated in Section IV using simulations and real
experimental data collected using the robot shown in Fig. 1.

II. SLAM FORMULATION

SLAM is a state estimation problem in which the goal
is to calculate an estimate of the robot trajectory and map
feature positions over time by using all available sensor
measurements. In general, the underlying stochastic system
of the mobile robot and its sensors can be represented using
the non-linear discrete-time equations:

xk = g (xk−1,uk, δk) (1)

zjk = h
(
xk,m

i, εk
)

(2)

where
xk represents the robot pose at time-step k,
g is the robot motion model,
uk is the the odometry measurement at time-step k,
δk is the process noise at time-step k,
zjk is the j-th measurement vector at time-step k
h is the sensor-specific measurement model,
mi is a random vector for the position of landmark i,



εk is the measurement noise
The set of all n measurements at time-step k is defined as:

Zk ≡
{
z1
k, z

2
k, . . . , z

n
k

}
(3)

The random vectors representing observed landmarks can be
concatenated into a single random vector:

m =
(
m1,m2, . . . ,mm

)
(4)

In the current vector-based formulation, the goal is to
calculate the posterior:

p (x0:k,m|Z1:k,u0:k) (5)

Using a probabilistic framework and a filtering approach, this
can be calculated recursively by Bayesian estimation:

p (x0:k,m|Z1:k−1,u0:k)

=p (xk|xk−1,uk) p (x0:k−1,m|Z1:k−1,u0:k−1) (6)
p (x0:k,m|Z1:k,u0:k)

=
p (Zk|x0:k,m) p (x0:k,m|Z1:k−1,u0:k)∫
p (Zk|x0:k,m) p (m|Z1:k−1,x0:k) dm

(7)

Alternatively, the SLAM formulation can generalized by
placing map vectors into a RFS:

Mk ≡
{
m1,m2, . . . ,mm

}
, (8)

where the number of landmarks, |Mk| = m, is also a random
variable. From this, (5) can be rewritten as

p (x0:k,Mk|Z1:k,u0:k) , (9)

and can also theoretically be solved by Bayesian estimation:

p (x0:k,Mk|Z1:k−1,u0:k)

=p (xk|xk−1,uk) p (x0:k−1,Mk−1|Z1:k−1,u0:k−1) (10)
p (x0:k,Mk|Z1:k,u0:k)

=
p (Zk|x0:k,Mk) p (x0:k,Mk|Z1:k−1,u0:k)∫
p (Zk|x0:k,Mk) p (Mk|Z1:k−1,x0:k) dMk

(11)

The relationship between the RFS and random vector formu-
lations will be revealed next.

III. GENERALIZATION OF VECTOR-BASED SLAM

Vector-based SLAM generally requires methods for data
association and map management routines that determine
the dimension of m. In contrast, the number of landmarks
is estimated as part of the RFS SLAM formulation. Ad-
ditionally, detection and clutter statistics are accounted for.
Hence, RFS-SLAM can be viewed as a generalization of
vector-based SLAM. To support this claim, it is necessary
to show the conditions under which (11) reduces to (7).
Therefore, the three critical factors in (11) will be examined:
a) The joint distribution for the robot trajectory and the map,
p (x0:k,Mk|Z1:k−1,u0:k), b) the measurement likelihood,
p (Zk|x0:k,m), and c) the normalizing factor.

A. The Joint Distribution for Robot Trajectory and Map

Using FISST [6], the distribution over the robot trajectory
and map can be factored as:

p (x0:k,Mk|Z1:k−1,u0:k)

=p (Mk|x0:k,Z1:k−1,u0:k) p (x0:k|Z1:k−1,u0:k)

=m! p|Mk| (m) p
(
m1|x0:k,Z1:k−1,u0:k

)
×

p
(
m2|x0:k,Z1:k−1,u0:k

)
× . . .×

p (mm|x0:k,Z1:k−1,u0:k) p (x0:k|Z1:k−1,u0:k) (12)

where m! represents all the different permutations of the mem-
bers in Mk. The probability mass function (PMF) p|Mk| (m)
is the likelihood ofMk having a cardinality of m. In a vector-
based approach, the number of landmarks is not treated as a
random variable in the map estimator, and is often fixed by
an external map management routine (i.e., p|Mk| (m) = 1).
Furthermore, vector-based approaches select one landmark
ordering out of all permutations (i.e., 1/m!). Applying these:

1

m!
p (x0:k,Mk|Z1:k−1,u0:k) , p|Mk| (m) = 1

=p
(
m1|x0:k,Z1:k−1,u0:k

)
p
(
m2|x0:k,Z1:k−1,u0:k

)
× . . .×

p (mm|x0:k,Z1:k−1,u0:k) p (x0:k|Z1:k−1,u0:k)

=p (m|x0:k,Z1:k−1,u0:k) p (x0:k|Z1:k−1,u0:k)

=p (x0:k,m|Z1:k−1,u0:k) (13)

This result is the same as the vector-based joint distribution
for the robot trajectory and the map, in the numerator of (7).

B. Measurement Likelihood

In vector-based approaches, an outlier rejection algorithm is
often used to discard false measurements. From the remaining
set of true measurements, data association is performed to de-
termine correspondences to landmark estimates. Let θ(i) = j
represent the association of landmark i with measurement j.
The vector-based measurement likelihood can be expressed as:

p (Zk|x0:k,m) =

n∏
j=1

∃i,θ(i)=j

p
(
zjk|m

θ(j),x0:k

)
(14)

For the presentation of the set measurement likelihood, let:

Z0
k ≡ Zk (15)

Z1
k ≡

{
Z0
k −

{
z1
}}

, z1 ∈ Z0
k (16)

Zrk ≡
{
Zr−1
k − {zr}

}
, zr ∈ Zr−1

k (17)

where Z0
k is the set of measurements at time-step k. Z1

k is
the set of measurement with one measurement taken away
from set Z0

k . Continuing with this pattern, Z2
k is the set

of measurements with a measurement taken away from Z1
k .

The set measurement likelihood can then be written as (18).
The first term considers all measurements as clutter, the
second term considers all but one measurement as clutter,
etc. These terms can be written more compactly according
to the last line, where the variable r represents the number of
measurement to landmark correspondences. The upper limit



p (Zk|Mk,x0:k) = p
(
Zk|

{
m1,m2, . . . ,mm

}
,x0:k

)
=pκ (Zk)

m∏
i=1

(
1− PD

(
mi
))

+
∑

y1∈Z0
k

(
pκ
(
Z1
k

) 1∏
i=1

(
PD
(
xk,m

i
)
p
(
y1|mi,x0:k

)) m∏
i=2

(
1− PD

(
mi
)))

+ . . .+

∑
y1∈Z0

k

∑
y2∈Z1

k

. . .
∑

yr∈Zr−1
k

(
pκ (Zrk)

r∏
i=1

(
PD
(
xk,m

i
)
p
(
yi|mi,x0:k

)) m∏
i=r+1

(
1− PD

(
mi
)))

+ . . .

=

min(m,n)∑
r=0

 ∑
y1∈Z0

k

∑
y2∈Z1

k

. . .
∑

yr∈Zr−1
k

(
pκ (Zrk)

r∏
i=1

(
PD
(
xk,m

i
)
p
(
yi|mi,x0:k

)) m∏
i=r+1

(
1− PD

(
mi
))) (18)

of r cannot exceed the number of measurements, n, nor
the number of landmark estimates, m. For a given number
of pairings (i.e., a given value of r), all permutations of
measurement to landmark estimate pairings are considered.
Unpaired measurements give the clutter factor, pκ (). Paired
couples (from i = {1 . . . r})) provide the probability of
detection and the single-landmark measurement likelihood
factors,

(
P iD
)
p
(
zi|mi,x0:k

)
. Unpaired landmark estimates

give the mis-detection factors,
(
1− P iD

)
.

In vector-based SLAM, landmark estimates without an
associated measurement remain unchanged by retaining their
current estimate. This can be mimicked in RFS SLAM by
setting the probability of detection to 1 for a measurement-
associated landmark, and to 0 for non-associated ones:

PD
(
xk,m

i
)

=

{
1 if θ(i) 6= 0
0 else (19)

Let Θ represent the number of landmarks with associated
measurements. All the terms in (18) for which r < Θ will
equate to 0 because there will be at least one probability
of mis-detection factor in each of these terms that equals
0. Furthermore, all the terms for which r > Θ in (18)
will also equate to 0 because there will be at least one
probability of detection factor in each of those term that equals
0. Additionally, for the r = Θ case, terms that do not agree
with the data association hypothesis will also equate to 0. As
a result, under these specific conditions, the set measurement
likelihood simplifies to:

p (Zk|Mk,x0:k) = pκ
(
ZΘ
k

) n∏
j=1

∃i,θ(i)=j

p
(
zjk|m

θ(j),x0:k

)
(20)

where the left-most factor treats all the non-associated mea-
surements as clutter, while the remaining factor includes the
measurement likelihoods of all the associated measurements.
Since false measurements from clutter are discarded in vector-
based SLAM, they should not affect the measurement likeli-
hood. Assuming that the clutter is distributed according to an

independently and identically distributed (IID) cluster process:

pκ
(
ZΘ
k

)
= (|Zk| −Θ)! p|ZΘ

k | (|Zk| −Θ)

n∏
j=1

6∃i,θ(i)=j

pκ

(
zjk

)
(21)

If the statistics for non-associated measurements are

pκ (z) =

{
1 if z ∈ ZΘ

k

0 else (22)

p|ZΘ
k | (|Zk| −Θ) =

1

(|Zk| −Θ)!
(23)

(by inspection) then substituting (21) (with (22) and (23)) into
(20) yields the vector-based measurement likelihood (14):

p (Zk|Mk,x0:k) =

n∏
j=1

∃i,θ(i)=j

p
(
zjk|m

θ(j),x0:k

)
, (24)

C. The Normalization Factor
The update equation from the Bayes filter (7) in the random

vector form contains a normalizing factor that can be written
in the form of an integral:∫

p
(
Zk|x0:k,m

1, . . . ,mm
)
×

p
(
m1, . . . ,mm|Z1:k−1,x0:k

)
dm1 . . . dmm (25)

The corresponding expression to (25) in RFS form can be
partially expanded according to FISST [6]:∫

p (Zk|Mk,x0:k) p (Mk|x0:k,Z1:k−1) dMk

=p (Zk, ∅|x0:k,Z1:k−1) +

∫
p
(
Zk,m1|x0:k,Z1:k−1

)
dm1+∫∫

p
(
Zk,m1,m2|x0:k,Z1:k−1

)
dm1dm2 + . . .+∫∫

p
(
Zk|m1,m2,x0:k,Z1:k−1

)
p
(
m1,m2|x0:k,Z1:k−1

)
dm1dm2 + . . .+∫
· · ·
∫
p
(
Zk|m1, . . . ,mm,x0:k,Z1:k−1

)
p
(
m1, . . . ,mm|x0:k,Z1:k−1

)
dm1 . . . dmm + . . .

(26)



The set integral is a summation series since it considers maps
of every possible finite size, including an empty map. By
fixing the size of the map to m (i.e., as determined by a map
management process), the expression in (26) simplifies greatly,
as the term corresponding with the fixed map size will be the
only one that remains, and (26) then becomes (25):∫

p (Zk|Mk,x0:k) p (Mk|x0:k,Z1:k−1) dMk, |Mk| = m

=

∫
· · ·
∫
p
(
Zk|m1, . . . ,mm,x0:k,Z1:k−1

)
p
(
m1, . . . ,mm|x0:k,Z1:k−1

)
dm1 . . . dmm (27)

In summary, it has been shown that the Bayes estimator
in RFS representation is equivalent to the random vector
representation under the following conditions, which from
hereon will be referred to as the ideal detection conditions:

• The size of the map estimate is deterministic.
• Data association is deterministic.
• The probability of detection of a landmark with an

associated measurement equals 1, and equals 0 if not
associated.

• The likelihood of non-associated measurements being
clutter is equal 1.

IV. EXPERIMENTS

Simulated and real outdoor experimental data were used to
validate the claim that RFS SLAM is equivalent to vector-
based SLAM under the ideal detection conditions. Without
further assumptions, the full RFS Bayesian estimates are
intractable in both the vector and set-based frameworks. There-
fore, the validation will be based on principled realizations of
the Bayes estimator. The Rao-Blackwellized (RB)-probability
hypothesis density (PHD) SLAM algorithm as detailed in
[7, 8] will be used as the RFS SLAM implementation, while
the factored solution to SLAM (FastSLAM) [9] algorithm will
be used as the vector-based implementation1. Both algorithms
are similar in that a RB particle filter (PF) is used in the
estimate with a factored form of the SLAM posterior. In both
cases, the robot trajectory is estimated with particles. RB-PHD
SLAM uses Gaussian mixture (GM)-PHD filters [10] for the
map update, while FastSLAM uses Extended Kalman filters
(EKFs) [11].

For a fair comparison, both SLAM algorithms used 200
particles. FastSLAM was implemented with a binary Bayes
filter that accounted for detection statistics for the purpose
of map management. Landmark estimates with a log-odds
of existence below −5.0 were pruned, as part of the map
management routine. For data association in FastSLAM, the
Hungarian Method [12] was used to determine the set of
correspondences that gave the highest combined measurement
likelihood for a given set of measurements.

1The implementation of RB-PHD SLAM and FastSLAM used
can be found in the open-source C++ RFS-SLAM library at
https://github.com/kykleung/RFS-SLAM.git.

A. Simulations

The use of simulations allowed detection statistics to be
controlled. In a simulated 2-D space, the robot traversed
through a landmark-populated environment while obtaining
range-bearing measurements from landmarks between 5m to
25m in any direction. All landmarks were assumed to have
the same probability of detection. False measurements were
added according to the clutter intensity. The number of clutter
measurements was assumed to be Poisson distributed, while
the clutter intensity was uniformly distributed over the mea-
surement space. Theoretically, under near perfect probabilities
of detection, and low clutter intensity, RB-PHD SLAM should
perform similarly to FastSLAM. When the probabilities of
detection are low, and clutter intensity is high, RB-PHD
SLAM should produce more consistent estimates as it accounts
for the detection statistics. The following cases were tested:

1) High probability of detection (PD = 0.99), and low
clutter intensity (κ = 0.000001m−2)

2) Low probability of detection (PD = 0.50), and high
clutter intensity (κ = 0.005000m−2)

The expected number of false measurements per time-step is
0.0019 for case 1, and 9.45 for case 2.

The map and trajectory estimates of both SLAM algorithms
for case 1 are shown in Fig. 2. Both methods performed
similarly as hypothesized.

For case 2, FastSLAM was expected to have difficulties due
to the implicitly assumed ideal detection conditions inherent in
vector-based SLAM. The simulated conditions made it difficult
for data association to assign proper correspondences, thus
causing the estimates to diverge. Fig. 3 shows the map and
trajectory estimates from the two algorithms. As predicted,
RB-PHD-SLAM was able to produce a consistent map , with
a trajectory estimate that followed closely to the real robot
trajectory. On the contrary, the FastSLAM solution diverged.
High-opacity ellipses in the results have Gaussian weights or
probabilities of existence close to 1.

B. Outdoor Experiments

To further validate the earlier hypotheses on the perfor-
mance of the two SLAM algorithms under different detection
conditions, two outdoor datasets were collected in Parque
O’Higgins, Santiago, Chile, using the mobile robot shown in
Fig. 1. The location is a municipal park, and data collection
was conducted in an area of approximately 100m × 100m.
The two datasets were collected at different times of the day,
with the first being early in the morning when the park is
free of people and other moving objects such as cars. The
second dataset was collected in the late morning, when there
are significantly more moving people and cars.

Wheel encoders on the robot provided odometry measure-
ments. A SICK LD-LRS-1000 scanning lidar was mounted
on the robot and produced 2-D scans with a resolution of 0.5
degrees at 7 Hz. A customized detector [13] was used to ex-
tract circular-like objects. A global positioning system (GPS)
receiver was also used during data collection, but the coverage
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Fig. 2: The SLAM solution under the case 1 conditions (PD =
0.99, κ = 0.000001m−2).

was poor. Hence, the GPS trajectory will not be shown. The
groundtruth map was made by manually identifying circular
objects from scan-matched lidar scans from 17 static positions.

The results from processing the low clutter dataset is shown
in Fig. 4, and those from the high clutter dataset is shown
in Fig. 5. The groundtruth figure-eight path traversed by the
robot can be seen in the satellite image underlays. As in the
simulation results, RB-PHD-SLAM and FastSLAM performed
similarly under the ideal conditions, while the FastSLAM
estimate diverged under the non-ideal conditions. Note for
the low-clutter case that the maps for RB-PHD-SLAM and
FastSLAM are different. This is caused by the combination of
not knowing the exact detection statistics for RB-PHD-SLAM,
and non-zero clutter intensity for FastSLAM. Nevertheless, the
resulting robot trajectories are similar for the low-clutter case.
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Fig. 3: The SLAM solution under the case 2 conditions (PD =
0.50, κ = 0.005000m−2).

V. CONCLUSION

RFS SLAM is an alternative to vector-based SLAM that
allows the estimator to incorporate non-heuristic-based data
association and detection statistics to estimate both the location
and number of landmarks. A set of ideal detection conditions
were define, under which the RFS Bayes estimator reduces to
the random-vector form, and it was mathematically shown that
RFS SLAM is a generalization of vector-based SLAM. Using
the RFS-based RB-PHD SLAM and vector-based FastSLAM
algorithms, simulations and real experiments were performed
to validate the claim. With close-to-ideal detection conditions,
both SLAM methods performed similarly as predicted. Un-
der non-ideal conditions, the FastSLAM solution diverged
due to the inherent ideal detection assumptions in vector-
based approaches, while the generalized RFS-SLAM approach
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Fig. 4: SLAM solutions from the low-clutter dataset.

demonstrated a superior performance over a much wider range
of detection and false alarm probabilities.
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