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Abstract—Recently, various techniques which adopt Random
Finite Set (RFS) based techniques for the solution of the
fundamental, autonomous robotic, feature based, Simultaneous
Localization and Mapping (SLAM) problem, have been proposed.
In contrast to their vector based counterparts, these techniques
offer the advantage that feature detection, as well as the usu-
ally considered spatial, statistics can be incorporated into the
Bayesian recursion in a joint manner. Most of the proposed
solutions are based on the Probability Hypothesis Density (PHD)
filter approximation of an RFS estimator. With the aim of
further improving such solutions, this article demonstrates the
importance of modelling feature detection uncertainty, based on
the commonly used range/bearing sensors such as laser range
finders used in robotics. In particular, a feature descriptor is
defined, based on the number of unoccluded range/bearing values
which can be estimated via ray-tracing techniques from estimated
SLAM robot pose/feature coordinates. A modified version of the
PHD corrector equation is introduced, which incorporates this
extra information. An example of such a descriptor, based on
the center location and radii of trees in a park, is demonstrated,
and statistical information obtained from such an environment is
used in a SLAM simulation. This demonstrates the potential of
achieving superior SLAM performance, when feature descriptor
statistics are incorporated directly into the PHD filter update
stage.

I. INTRODUCTION

Within the autonomous robotic feature based navigation and

Simultaneous Localization and Mapping (SLAM) literature,

feature detection statistics are often ignored, and feature un-

certainty is considered to lie solely in the spatial domain,

and typically modelled with range and bearing uncertainties

[1, 2]. It is considered the task of external map management

and association algorithms to minimise the problems of false

alarms and missed detections, before map estimation takes

place so that mathematically, the probabilities of detection of

features that have been associated are assumed to be unity, and

the probabilities of false alarm of the associated measurements

are assumed to be zero. Also, the probabilities of detection

of unassociated features are considered to be zero, while the

probabilities of false alarms of unassociated measurements

are assumed to be unity. In some state of the art SLAM

solutions, detection statistics are considered via the use of a

binary Bayes filter to update each feature’s confidence measure

[1]. However, this takes place independently of the SLAM

Bayesian recursion, therefore ignoring the correlation between

feature existence and the SLAM state spatial uncertainties. In

contrast, the Random Finite Set (RFS) based filters include

probability of detection and false alarm statistics directly into

the filter’s update step, making the feature detector’s detection

statistics an intrinsic part of the Bayesian state estimation

process and its solution. Multiple RFS-based filters have been

applied to the SLAM problem. Mullane et. al. introduced the

RFS methods to the SLAM problem by using PHD filter [3]. A

Single Cluster (SC)-PHD filter has also been applied to SLAM

[4]. More recent research has applied newer RFS filters from

the tracking literature, such as the Labeled Multi Bernoulli

filter [5, 6], to the SLAM problem [7].

In the related field of target tracking, detection statistics

are considered to be of prime importance. For example, it

has long been recognized that a sensor’s received signal

amplitudes related to true targets should be higher than those

corresponding to false alarms, and that this information should

be utilized. However, this requires the Signal-to-Noise Ratio

(SNR) corresponding to targets to be known when detected

from any sensor to target view point. Since such information

is typically not available, object detection probabilities are

usually naively considered to be constant1, despite the fact

that the varying relative positions of objects and the sensor,

and any occlusions, typically have a large effect on that

object’s detection probability [8]. Little attention is given to the

shape of a sensor’s FoV and the possibility of partial or total

object occlusion, and their quantified effects on the expected

detection statistics.

The use of the received power from a radar sensor directly

in the PHD update equation has been proposed by Clark et.

al. [9], in which it was demonstrated that the additional power

information improves the performance of the PHD filter, even

when the SNR is unknown. This article applies a similar

principle, based on the expected number of range point in-liers

of environmental features which can be totally visible, partially

occluded or completely occluded to range/bearing sensors.

Such sensors, for example Laser Range Finders (LRFs), are

typically used in autonomous robotics research to provide

feature measurements for SLAM.

The article proceeds as follows. In Section II, vector and

RFS based SLAM solutions are explained, high-lighting the

importance of incorporating knowledge of detection statistics

into both solutions. Section III then reviews the modified PHD

filter proposed in [9], which allows for the incorporation of

1but not necessarily zero or unity.



radar amplitude information into its estimation equations. The

contribution of this article is presented in Section IV, in which

the concepts are applied to the expected number of sensed

inliers corresponding to features, from any range/bearing type

sensor, and integrated into a RFS SLAM solution. Finally,

Section V presents the simulation results obtained, demon-

strating the importance of including detection based statistical

information into the SLAM problem.

II. DETECTION STATISTICS IN SLAM

The importance, and incorporation of, detection statistics

into both feature vector and RFS based SLAM solutions is

now summarized, in order to provide the basis for a modified

PHD SLAM formulation in Section IV.

A. Vector Based SLAM Techniques & Detection Statistics

Most feature vector based solutions to SLAM require a

map management routine to manage the addition and removal

of features from the map estimate. Such methods vary in

mathematical rigor. While some are heuristic in nature, others

use a binary Bayes filter as used in the occupancy grid based

mapping [1, 10].

In the binary Bayes filter the probability of existence

PE(m
i|x0:k,Z0:k) of the ith map feature vector mi, given

the history of robot poses x0:k from discrete time 0 to k

and all feature measurement sets Z0:k, is updated at each

step using the probabilistic evidence provided by the current

measurement Zk, and assumed or known data association -

i.e.

PE(m
i|x0:k,Z0:k) =

PE(m
i|xk,Zk)PE(m

i|x0:k−1,Z0:k−1)

p(Zk|Z0:k−1)
,

(1)

where xk represents the robot pose (spatial coordinates and

orientation) at time-step k. (1) can be expressed in log-odds

form as follows

lk(m
i) = lk−1(m

i)

+ log
PE(m

i|xk,Zk)

1− PE(mi|xk,Zk)
− log

PE(m
i)

1− PE(mi)
. (2)

By setting the prior probability of existence PE(m
i) to an

uninformative prior (0.5) the last term in equation (2) is elim-

inated. Then incorporating modelled or known probabilities of

detection and false alarm, the probabilistic evidence provided

by the measurements can be calculated as

PE(m
i|xk,Zk)

=
(1− PD(m

i))PFAPE(m
i) + PD(m

i)PE(m
i)

PFA(1− PFA)PD(mi)PE(mi)
(3)

when mi is associated to a measurement in Zk, and as

PE(m
i|xk,Zk) =

(1− PD(m
i))PE(m

i)

(1− PE(mi)) + (1− PD(mi))PE(mi)
(4)

when mi is unassociated. PD(m
i) is the probability of detec-

tion of feature mi, PFA is the probability of a measurement

being a false alarm. From equation (2) it can be seen that

a simple measurement counting heuristic can be interpreted

as a log odds binary Bayes filter with an implicitly assumed

probability of detection and false alarm.

B. Random Finite Set SLAM and the Importance of Detection

Statistics

Mullane et. al. [3] introduced the concept of Random Finite

Sets into the SLAM problem. By recognizing that the SLAM

state is more naturally represented by a random set instead of a

random vector, they where able to include the data association

and map management problems into the Bayesian estimation

paradigm. Previous solutions to the SLAM problem, resolved

these problems using external algorithms, which are executed

outside of the Bayesian update, making them sub-optimal.

Since an RFS implementation of SLAM will be used as

the primary demonstration of the importance of determining

detection statistics, a brief overview of RB-PHD-SLAM now

follows.

1) SLAM Definitions with RFSs: SLAM is a state es-

timation problem in which the best estimate of the robot

trajectory and map feature positions is sought over time, using

all sensor measurements. Common to both random vector

and RFS SLAM approaches, the underlying stochastic system

representing the robot’s pose component is modelled by the

non-linear discrete-time equation

xk = g(xk−1,uk−1, δk−1) (5)

where:

• g is the robot motion model,

• uk is the the odometry measurement at time-step k,

• δk is the process noise at time-step k.

In the RFS SLAM approach, the observed landmarks up to

and including time-step k, are defined as an RFS

Mk ≡ {m1
k,m

2
k, ...,m

m
k } (6)

where

• m
j
k is a random vector containing the Cartesian position

of landmark j, and

• the number of landmarks, m = |Mk|, is also a random

variable.

In general, the landmark from which a measurement is gener-

ated is unknown. Furthermore, there is a probability of detec-

tion, PD(m
j
k|xk) , associated with every landmark, implying

that it may be misdetected with probability 1 − PD(m
j
k|xk).

Measurements may also be generated from sensor noise or

objects of non-interest (clutter), with assumed known distri-

butions. The set of all n measurement vectors at time-step k

is defined as

Zk ≡ {z1
k, z

2
k, ..., z

n
k}. (7)

where

• zi
k is the i-th measurement vector at time-step k.



With these definitions a set-based, measurement model can

be defined as

Zk ≡ H(xk,Mk, ǫk) ∪ Ek (8)

where

• H(xk,Mk, ǫk) models all expected measurements based

on xk and the map set Mk,

• ǫk models the spatial noise associated with the measure-

ments at time k, and

• Ek models the clutter or unexpected measurements (false

alarms) at time k.

Using a Bayesian framework and a filtering approach, the

Probability Density Function (PDF)

p (x0:k,Mk|Zk,u0:k) (9)

is sought through RFS approaches, requiring Finite Set Statis-

tics (FISST) [11]. The estimates at each timestep are made

relative to the reference frame defined by the robot’s initial

pose.

Using the Rao-Blackwellized Particle Filter as in Fast-

SLAM, the SLAM posterior PDF (Equation (9)) can be

factored into the form [12, 13]

p (x0:k|Zk,u0:k) p (Mk|x0:k,Zk,u0:k) (10)

such that the first term in (10) is a PDF on the robot’s trajectory

and can be sampled using particles. The second term in (10)

is the PDF of the map conditioned on the robot’s trajectory.

In the RFS-based approach, the map RFS is assumed to

follow a multi-object Poisson distribution such that features

are independent and identically distributed (IID) as

p
(

Mk = {m1
k,m

2
k, ...,m

m
k }| |Mk| = m

)

= m!

m
∏

i=1

pm(mi)

(11)

where pm(·) is the spatial distribution for the features in the

map. Note that the m! term is necessary since a set includes all

possible permutations of its elements. The number of features

is assumed Poisson distributed with parameter λ according to

|Mk| = p(m) ∼ λme−λ

m!
(12)

These assumptions allow the PDF of the map RFS to be

approximated by a time varying PHD, which is also referred

to as an intensity function, vk:

vk = vk(m) ≡ λpm(m). (13)

The map PDF is then approximated as

p(Mk = {m1
k,m

2
k ... mm

k }) =
∏m

i=1 vk(m
i
k)

exp(
∫

vk(m)dm)
(14)

In contrast to vector-based RB-PF approaches, which typically

use the EKF to update the Gaussians for individual landmarks,

a PHD filter is used to update the map intensity function in

RB-PHD-SLAM [13]. A brief overview of the main steps

in the RB-PHD-SLAM filter now follows, highlighting the

importance of detection statistics.

2) Particle Propagation: At time-step k, the particles rep-

resenting the prior distribution,

x
[i]
k−1 ∼ p (x0:k−1|Z1:k−1,u0:k−1) (15)

are propagated forward in time by sampling the motion noise,

δ
[i]
k , and using the robot motion model (5)

x
[i]
k = g(x

[i]
k−1,uk−1, δ

[i]
k−1) −→ p (x0:k|Z1:k−1,u0:k−1)

(16)

This step is common to vector-based Rao-Blackwellized solu-

tions to SLAM, such as FastSLAM [12].

3) Prediction: For each particle, its map intensity from the

previous update, v+k−1(m), is augmented with an arbitrarily

small “birth” intensity vbk, according to the PHD filter predictor

equation:

v−k (m) = v+k−1(m) + vbk(m) (17)

This “birth” intensity vbk(m) represents the number of new

features that might appear at m and is usually heuristically

determined. This intensity is required to model the appearance

of new features and is similar to the proposal distribution

concept in FastSLAM.

4) Map Update: The map intensity for each particle is

updated with the latest measurements according to the PHD

filter corrector equation

v+k (m) = v−k (m)(1− PD(m)) (18)

+ v−k (m)

|Zk|
∑

i

PD(m)h(zi
k|m,xk)

κ(zi
k|xk) +

∫

PD(m)h(zi
k|m,xk)v

−
k (m)dm

where h(zi
k|m,xk) is the ith measurement’s/detected fea-

ture’s spatial likelihood and κ(zi
k|xk) is the intensity of the

clutter RFS at time k. The first term in (18) is a copy of

v−k (m) scaled down by the factor (1 − PD(m)) to account

for the possibility that the predicted features are undetected.

In the second term, note that instead of determining data

association based on heuristics, the PHD filter determines

how much a measurement should influence each and every

landmark estimate.

5) Importance Weighting and Re-sampling: The weighting

and re-sampling of particles is the method used to update

the robot trajectory PDF after propagation (also known as the

proposal distribution). This is given by

p (x0:k|Z1:k−1,u0:k−1) . (19)

This has to to be updated to become a new PDF representing

the robot trajectory after measurement updates (or the target

distribution),

p (x0:k|Z1:k,u0:k−1) . (20)

Bayes rule allows the weighting distribution in terms of (19)

and (20) to be expressed as

p (x0:k|Z1:k−1,u0:k−1)

p (x0:k|Z1:k,u0:k−1)
= ηp (Zk|x0:k,Z1:k−1) , (21)



in which η is a normalizing constant. Since (19) and (20) are

sampled using particles, the weighting distribution, defined as

wk, is also sampled such that a weight is calculated for each

particle. To solve (21), Bayes theorem gives

wk ≡ p (Zk|x0:k,Z1:k−1)

= p (Zk|Mk,x0:k)
p (Mk|Z1:k−1,x0:k)

p (Mk|Z1:k,x0:k)
(22)

Equation (22) can be solved because the map RFS is assumed

to be multi-object, Poisson distributed. Note from (22) that

the choice of the map, Mk, for which the expression is

evaluated in its general form is theoretically arbitrary since

the right hand side of the first line of (22) is independent

of the map. This has led to multiple solutions that adopt

the empty-set strategy, the single-feature strategy and multi-

feature strategy in determining the particle weight wk in (22).

Although wk is theoretically independent of the map, because

of the approximations involved in the PHD Filter, it has been

shown that the choice of the map can have a significant

effect on the performance of the filter and that the multi-

feature strategy is superior to the others [14]. This is achieved

at the cost of an increased computational complexity. The

multi-feature strategy is adopted in this work. In [13, 15] the

implementation of RB-PHD-SLAM equations (16), (17) and

(18) using Gaussian mixtures is shown.

Importantly, within the above four steps, the map update

and particle weighting steps require the knowledge of both

the probability of detection of the feature detector and the

intensity (PHD) of its false alarms.

III. PHD SLAM USING TARGET AMPLITUDE FEATURE

In the SLAM literature features generated by a detector are

often accompanied by a descriptor, which can be used to help

in data association. In the related field of target tracking, Clark

et. al. [9] proposed a modification to the PHD filter that uses

RADAR measurement amplitude information together with its

accompanying range value. For this, the measurement vectors

zi
k are redefined to be

zi
k ≡ [̊zi

k ai] , (23)

where z̊
i
k corresponds to the spatial part of the measurement

(i.e., what used to be the entire measurement), and ai is the

amplitude information. Hence, h(zi
k|m

j
k,xk) and κ(zi

k|xk)
account for the joint likelihood of target state and amplitude.

The distributions of this amplitude, under false alarm and

detection hypotheses, were modelled as Swerling type I and

II models [16], which provide probabilistic (Rayleigh) models

of received power fluctuations when the RADAR-to-target

viewing aspect changes. The dependency on the environment

is modelled by a single parameter d, where the expected

(mean) SNR from a target is 1+d and the model is described

by the equations

pFA(a) = a exp

(−a2

2

)

, a ≥ 0 (24)

pD(a) =
a

2(1 + d)
exp

( −a2

2(1 + d)

)

, a ≥ 0 (25)

where a is the received amplitude of the radar signal, pFA(a)
and pD(a) are the distributions of a for false alarms and targets

of interest respectively. The modified PHD update equation of

[9] is then

vk
+(m) = v−k (m)(1− PD(d)) + v−k (m)

×
|Zk|
∑

i

Ud(m, zi)

κ(̊zi
k|xk)gτFA(ai) +

∫

Ud(m, zi)v
−
k (m)dm

(26)

where

Ud(m, zi) = PD(d)g
τ
a(ai|d)h(̊zi

k|m,xk) (27)

representing the product of the feature detection probability,

the amplitude measurement likelihood and the spatial measure-

ment likelihood. gτa(ai|d) and gτFA(ai) are the measurement

and false alarm likelihoods of the amplitude ai of measurement

zi occurring, given that a detection threshold τ was exceeded

- i.e.:

gτFA(ai) =

{

pFA(ai)∫
ai>τ

pFA(ai)dai
, ai ≥ τ

0, ai < τ
(28)

gτa(ai|d) =
{

pD(ai)∫
ai>τ

pD(ai)dai
, ai ≥ τ

0, ai < τ
(29)

The difference between (26) and the standard PHD update

(18) is the inclusion of the measurement and false alarm

likelihoods. This will augment the weight of measurements

which are more likely to be true detections rather than false

alarms.

Clark et. al. [9] presented a reasonable prior distribution

for d and showed that by marginalizing d using this distri-

bution, the filter performance could be improved compared

to experiments, which ignored the amplitude information. Its

prior distribution was also used to determine the probability

of detection used in the PHD filter.

Note that Equation (26) requires estimates of both PD(d)
and gτa(a|d) as well as the clutter term κ(zi

k|xk)g
τ
FA(a).

The estimation of these statistical quantities for range/bearing

sensors is addressed in the following sections.

IV. ESTIMATING FEATURE AMPLITUDE LIKELIHOOD

BASED ON RANGE DATA

A. Estimating a Likelihood Equivalent to gτa(a|d)
Instead of the Swerling based Rayleigh distributions of

the received signal amplitude, adopted for radar measurement

likelihoods in [9], the measurement vectors zi
k are redefined

to be

zi
k ≡ [̊zi

k θi] , (30)



where θi is a descriptor vector associated to measurement z̊
i
k.

A general probability distribution p(θ) for true detections can

be used to define the measurement/feature likelihood i.e.:

g
γ
θ
(θ) =















p(θ)
∫

θvol

p(θ)dθ
if θ ∈ θvol

0 if θ 6∈ θvol

(31)

where θ is a feature parameter vector resulting from any

general feature detection algorithm. An example of such a

parameter vector will be given in Section V. In (31), p(θ) is

a distribution on θ, with known parameters. θvol is a volume

in the θ space such that if θ falls within θvol, the detector

makes a detection. This volume is completely determined by

the detector. Further, a different distribution pFA(θ) has to be

used to model false alarms in the detectable volume.

g
γ
FA(θ) =















pFA(θ)
∫

θvol

pFA(θ)dθ
if θ ∈ θvol

0 if θ 6∈ θvol

(32)

These likelihoods can then be used, along with the detection

statistics PD(m|np(m,xk)) and PFA introduced in [17], in a

modified PHD filter update equation equivalent to (26), given

by

v+k (m) = v−k (m)(1− PD(m|np(m,xk))) + v−k (m)×
|Zk|
∑

i

Unp
(m, zi)

κ(̊zi
k|xk)g

γ
FA(θ) +

∫

Unp
(m, zi)v

−
k (m)dm

(33)

where

Unp
(m, zi) = PD(m|np(m,xk))g

γ
θ
(θi)h(̊z

i
k|m,xk) (34)

In principle, θ can be any descriptor based on the measure-

ment. Clearly it is desirable that its distribution for mea-

surements p(θ) and for false alarms pFA(θ) are as separated

in the θ space as possible, so that the measurements that

are more likely to be false alarms will have lower weights

in the modified PHD update equation (34). Otherwise the

likelihoods g
γ
FA(θ) and g

γ
θ
(θ) will be approximately equal and

the modified PHD filter from Equation (26) will return to its

traditional form, given by (18).

B. Application to General Range Data

Since many autonomous robotic and SLAM solutions rely

on features detected by range/bearing sensors, this section

shows how the feature likelihoods can be estimated using

range data. In particular the application used as an example is

of a robot traversing a park environment and using a circular

cross section object (such as a tree trunk) detector as in

[17]. The likelihoods are obtained by comparing the estimated

number of feature in-lier points, calculated using ray tracing

as in [17], with the actual number of points that the feature

detector extracts from the hypothesized feature.

1) Estimating Feature Likelihoods g
γ
θ
(θ) and g

γ
FA(θ): To

include the feature likelihood, a feature descriptor θ which

behaves in a similar manner as the amplitude a used in [9]

has to be determined. This can be the same as the parameter

vector that the feature detector uses to make its decision or

some other value obtained from the measurement.

As explained in section IV, θ should have well spaced dis-

tributions for false alarms and detections, wrt θ. For example

in line detectors such as the Split and Merge and Random

Sampling and Consensus (RANSAC) algorithms [18], the

largest error of the line fit divided by the length of the line

could be used (one would expect this value to be smaller for

real lines than for false alarms).

Corner detectors could fit a line to the data and use the

same descriptor, but expect the opposite result (i.e., a line

should fit poorly). However, regardless of the detector used,

the number of range values n used by the detector to extract

the feature (e.g., in RANSAC this would be the number

of inliers) is proposed as a descriptor while the predicted

number of unoccluded range points np(m,xk), is proposed

as a sufficient statistic, equivalent to the signal to noise ratio

d+1. As shown in Figure 1, np(m,xk) is predicted by using

ray tracing to simulate the range values that would be obtained

from the object (hollow points). These range values are then

compared with the actual range values from the sensor (solid

color points). If the actual range values are considerably lower

than predicted then the predicted range points are labelled as

occluded (by the red points), the number of remaining points

(green points) is np(m,xk).

Fig. 1: Analysis of range data from a circular shaped feature.

Based on the SLAM state estimate, the range sensor beams

that would hit the feature (black lines) and their predicted

range values (hollow points), can be determined. Beams with

range values several times the range standard deviation shorter

than expected (red points) are discarded from the detection

probability analysis. The number of remaining (green) points

is used to estimate the feature’s probability of detection, and

the difference between this number and the actual number

of points used by the detector n − np(m,xk) is used as a

descriptor (θ). Black points are range values with angles that

do not correspond to the feature being analysed.

After choosing the descriptor real data needs to be obtained

in an environment with features identified by independent

means in order to model the probability distributions p(θ) and

pFA(θ). Figure 2 shows the number points n as a function



of the predicted number of points np(m,xk) in one such

environment. This data was obtained by taking LIDAR scans

in an environment with known circular sectioned features

determined by independent means [17]. As can be seen in

Figure 2, the number of range values n varies approximately

linearly with its prediction np(m,xk). This suggests that

the difference n − np(m,xk) should be modelled, since it

is expected to have close to zero mean. Figure 3 shows a

histogram of the difference between the predicted number of

points and the actual number of points for detections made in

the same dataset and feature detector as in [17].
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Fig. 2: Number of points measured n as a function of the

predicted number of points np(m,xk). The dependency of n

on np(m,xk) can be observed in this figure.

To model the distribution of the number of range values

used to generate a detection, given the predicted number

of unoccluded points based on the current vehicle pose and

feature location estimates, a Normal distribution is used:

p(n|np(m,xk)) =
1

σn

√
2π

e
−

(n−np(m,xk)−µn)2

σ2
n (35)

In Equation (35) the mean and covariance of the distribution

are estimated using a dataset with known features.

For the case of false alarms, the distribution of the number

of points has to be modelled using known false alarms from

a specific dataset. Data from a park environment was used for

this purpose and the exponential distribution was selected as

the closest fit to the data. Figure 4 shows the histogram for

the number of points, for the case of false alarms.

V. SIMULATED SLAM RESULTS

To confirm the potential of applying the concept of [9] to the

SLAM problem, simulations were carried out. Both the regular

RB-PHD-SLAM from [19] and RB-PHD-SLAM with the

modified PHD filter (33), which incorporates target descriptor

information were executed in a simulated environment. In

both simulations the false alarm κ(afhfh) was increased until

one of the filters diverged. Each result was averaged over 5

independent simulations. In the simulation, values for n where

randomly generated based on the distributions estimated from
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Fig. 3: Number of points minus predicted number of points

distribution.
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Fig. 4: Number of points distribution for false alarms resem-

bles an exponential distribution.

the dataset, this is Normal and exponential for detections and

false alarms respectively.

Results for both the regular RB-PHD solution without

feature descriptor likelihood information and the proposed

solution with this information are displayed in Figures 5 and 6

respectively. As is qualitatively observable in the figures, the
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Fig. 5: RB-PHD-SLAM simulation results.
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Fig. 6: RB-PHD-SLAM simulation results with target ampli-

tude feature.

addition of target descriptor information improves the solution

in terms of trajectory and map estimates. The mapping error

was more precisely evaluated using the Optimal Sub-pattern

Assignment (OSPA) metric [20], as shown in Figure 7.
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Fig. 7: Average OSPA distance between the ground truth

map and the map estimates. Errors were averaged over 5

independent simulations.

The metric shows an improved performance of the modified

RB-PHD-SLAM implementation, compared to the solution

which ignores feature descriptor likelihoods. In this graph the

mapping error reduction resulting from the proposed method

is evident.

VI. SUMMARY

In this article, a modified PHD filter which incorporates

feature descriptor likelihoods into its update equations was

applied to the SLAM problem. In a manner similar to the

technique proposed in [9], the measurement likelihoods of a

feature descriptor representing the centers and radii of trees,

were modelled using real data from a park environment with

known feature locations. The modified PHD SLAM algorithm

was then simulated using the estimated likelihoods and was

shown to outperform RB-PHD-SLAM which used assumed

constant detection statistics.

The code of the various SLAM algorithms used in this

paper, and the actual parameter settings used, are a part

of the RFS-SLAM C++ library that can be obtained at:

https://github.com/kykleung/RFS-SLAM.
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