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Abstract— Low-cost inertial measurement units (IMUs) are
increasingly becoming commercially available and the use
of IMUs in autonomous vehicle applications has increased
rapidly in the past decade. IMUs are subject to various errors,
such as biases, drifts, nonlinearities, scale factors and noise.
The noise is produced by various sources, such as thermal
and vibrational noise. Noise estimation is critical for accurate
inertial navigation systems (INS). The main contribution of
this paper is that a noise analysis of the raw accelerations
measured by IMUs during signal (i.e, the acceleration caused
by a specific force) presence or absence is carried out to reduce
these noise components, which corrupt the inertial data. After
the noise reduction, multi-aiding information from odometry,
a single-axis gyroscope and vehicle constraints is utilized to
bound the error growth of the inertial data and produce a
reliable outdoor localization system. Experimental results are
presented to show the effectiveness of the noise reduction
method and the improved accuracy of the multi-aided INS.

I. INTRODUCTION

Contrary to fairly flat and structured indoor environ-
ments, it is much more difficult for mobile robots to local-
ize in general outdoor locations. A straightforward solution
to the problem of localization in outdoor environments is
the use of Global Positioning System (GPS). However GPS
is subject to multi-path errors and the problem of limited
view of enough satellites. Further, GPS can be easily
jammed and it may be totally unavailable, for example,
in planetary exploration applications.

Due to the fragile GPS data, more robust methods of
localization need to be found for ground vehicles in outdoor
environments. Inertial navigation systems (INS) are non-
jammable and self-contained and can provide pose estima-
tion in 3D due to a triad of orthogonal accelerometers and
gyroscopes. Low-cost solid state inertial measurement units
(IMUs) are increasingly becoming commercially available
to cater for autonomous vehicle applications. Hence, the
utilization of INS in mobile robotics has increased rapidly
in the past decade, [1], [8], [5], [6], [10] and [2].

In INS, since rate information has to be integrated to
produce velocity, position and attitude measurements, the
small errors in the rates will cause accumulated unbounded
errors in the integrated measurements. For low-cost IMUs,
the accelerations and angular rates are subject to noise
and biases from various sources. Hence, it is typical to
combine IMU with external sensors to produce effective
vehicle pose information. GPS is mostly used to bound the

INS errors and many INS/GPS navigation systems for low
speed autonomous vehicle applications have been devel-
oped successfully [12], [14], [15]. Under the consideration
that GPS is unavailable, other methods to bound the errors
of INS exist in the literature. In [8] and [9], data from
odometry and gyroscopes have been fused together for
localization. In [10], a method was presented for combining
odometry and inertial information to provide an estimate
of 6 degrees of freedom of a rough terrain rover. Gamini
et al [6] put forward an in-flight alignment method by
using the constraints that govern the motion of a vehicle
to improve the accuracy of low-cost IMUs. They made the
INS velocities observable by using these constraints and
odometry information. In [2], a multi-aided INS has been
developed to solve the outdoor localization problem and
the multi-aiding information is from odometry, a single-
axis gyroscope and vehicle constraints.

Almost all these inertial based localization methods
combine inertial data with external data, while methods
based on analysis of the noise and biases within IMUs are
seldom found. In [1], Barshan et al modelled the biases and
drifts of inertial sensors as exponential functions of time,
and estimated an augmented mobile robot pose state, which
contained these bias terms. In this paper, noise analysis
during signal presence or absence is carried out to reduce
the various noise, which corrupt the IMU data. It will be
shown that commonly adopted noise filtering methods such
as low pass filters or matched filters are inappropriate in
this application. Hence, a noise analysis method, named
the minima controlled recursive averaging (MCRA), which
was originally developed by Cohen et al for robust speech
enhancement [7], and has also been utilized by Jose et al to
reduce the noise level for their Radar data successfully [4],
is adopted. In this paper, after noise reduction, the multi-
aided INS approach introduced in [2] is extended to make
an accurate and reliable localization system for outdoor,
uneven environments using the noise-reduced inertial data.

The paper is organized as follows. Noise estimation and
reduction using MCRA will be introduced in section II.
The concise INS prediction model and the multi-aiding
method utilizing odometry, a single-axis gyroscope and
vehicle constraint information will be presented in section
III. In section IV, experimental results are presented.



II. NOISE ESTIMATION FOR THE IMU DATA

For typical outdoor environment localization applica-
tions, low-cost IMUs are subject to errors from diverse
sources such as biases, drifts, nonlinearities, scale factors
and noise. The noise is produced by various sources,
such as thermal and vibrational noise. For low speed
applications such as land-borne vehicle localization, the
smaller accelerations and angular rates measured by low-
cost IMUs can be indistinguishable from the noise. Figure
1 shows the frequency components of the Inertial Science
DMARS-I IMU x-axis acceleration when the test vehicle is
stationary. Since the vehicle is not in motion, these spikes
in the figure denote noise and need to be filtered before
further processing to obtain accurate vehicle pose. In this
case, a low pass filter would not suppress the noise, as the
noise also corrupts the low frequency accelerations.
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Fig. 1. Frequency components of acceleration in the Inertial
Science DMARS-I IMU x-axis when the vehicle is stationary.

Matched filters are commonly adopted in digital signal
processing. However, the exact frequency spectrum of the
signal is needed (which is unknown for the measured accel-
eration of the moving vehicle), hence this is not a viable
solution either. Therefore, a method called minima con-
trolled recursive averaging (MCRA) [7] is now introduced
to filter the noisy accelerations. Lower noise accelerations
can be obtained by estimating the noise amplitude in the
raw data. The noise estimate is performed by averaging
past signal (acceleration) spectral amplitude and using a
smoothing parameter. This smoothing parameter is adjusted
by the signal (for example, for the acceleration term, the
acceleration caused by a specific force) presence probabil-
ity in the signal profile. The signal presence probability is
obtained by taking the ratio between the local amplitude
of signal spectra containing noise and its minimum. The
estimated noise amplitude is then subtracted from the noisy
signals to give a lower noise signal spectra.

Let acc = a(n) denote a set of observed accelerations by
one of the accelerometers in the IMU, where n is a discrete-
time index and a is a function of n. It is now divided into
overlapping frames by a w-point window function b(n)
whose length is 2w + 1 = N and analyzed using the
discrete time Fourier transform. In the frequency domain,

the amplitude of the noisy signal spectra is given by,

Â(k, l) =
N-1∑
n=0

a(n + lM)b(n) e−j( 2π
N )nk (1)

where Â(k, l) is the k-th amplitude value of l-th signal
spectra, k is the frequency index, l is the frame index
and M is the frame update step in time. For example, in
one data set of our accelerations, the x-axis acceleration is
accx = a(n), with the discrete-time index n ∈ (1, 42000).
Then the accx is equally divided into 60 frames with 700
acceleration values in each frame. The sampling frequency
of the accelerometers is 200 Hz and hence, in equation
1, the frequency index k ∈ (1, 200), the frame index
l ∈ (1, 60) and the frame update step M = 350 (50%
overlapping windows).

Smoothing is then performed by a first order recursive
averaging technique:

Â(k, l) = αsÂ (k , l − 1) + (1 − αs) Â(k, l) (2)

where αs (0 < αs < 1) is a weighting parameter and has
the value of 0.8 in our case. First a minimum and then
a temporary value of the local acceleration amplitude is
initialized to Amin(k, 0) = Atmp(k, 0) = Â(k, 0). Then a signal
wise comparison is performed with the present data l and
the previous data l − 1.

Amin(k, l) = min {Amin (k, l − 1) , Â (k, l)} (3)

Atmp(k, l) = min {Atmp (k, l − 1) , Â (k, l)} (4)

When L frames have been recorded, the temporary variable,
Atmp is initialized by

Amin(k, l) = min {Atmp (k, l − 1) , Â (k, l)} (5)

Atmp(k, l) = Â (k, l) (6)

The resolution of the local minima search is determined by
the frame parameter L. For example, in our case, L = 15,
which means that all 60 frames are divided into 4 local
parts to search for the local minima.

Let the signal-to-noise ratio, ASNR (k, l) = Â (k,l)
Amin (k,l) be

the ratio between the local noisy signal amplitude and its
derived minimum.

In the Neyman-Pearson test [13], the optimal decision
(i.e. whether a signal is present or absent) is made by
minimizing the probability of the type II error (the false
detection error), subject to a maximum probability of type
I error (the missing detection error), and is as follows.

The test, based on the likelihood ratio, is

p(ASNR |H1)
p(ASNR |H0)

H1

≷
H0

δ (7)

where δ is a threshold and H0 and H1 designate hypothetical
signal absence and presence respectively. p(ASNR |H0) and
p(ASNR |H1) are the conditional probability density func-
tions. The decision rule of equation 7 can be expressed
as

ASNR (k, l)
H1

≷
H0

δ (8)



An indicator function, I(k, l) is defined where, I(k, l) = 1
for ASNR > δ and I(k, l) = 0 otherwise.

The estimate of the conditional signal presence proba-
bility, p̂

′
(k, l) is

p̂
′
(k, l) = αp p̂

′
(k, l − 1) + (1 − αp) I(k, l) (9)

where αp(0 < αp < 1) is a smoothing parameter. The value
of αp is chosen in such a way that the probability of signal
presence in the previous frame has very small correlation
with the next frame and αp = 0.1 in our application.

The variance of the noise, λ̂
′
(k, l + 1) in k-th signal

frequency is then denoted by

λ̂
′
(k, l + 1) = α̃d(k, l)λ̂d(k, l) + [(1 − α̃d)(k, l)]ASNR(k, l)

(10)

where

α̃d(k, l) = αd + (1 − αd)p
′
(k, l) (11)

αd (0 < αd < 1) is a smoothing parameter and αd =
0.95 in our case. Subtracting the estimated noise amplitude
from the noisy spectra will give a noise reduced signal
bin. The upper graph of figure 2 shows the IMU x-axis
acceleration recorded on a pickup truck. After the MCRA
noise estimation and reduction applied, the noise in the raw
data is reduced, which is shown in the lower graph.
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Fig. 2. Accelerations in the IMU x-axis, raw data (upper graph)
and after noise reduction (lower graph).

The noise in the IMU’s raw data can be reduced by this
noise estimation method, which will be helpful in estimat-
ing the vehicle’s pose more accurately. The biases in the
inertial data are however not yet estimated and the accuracy
of the vehicle’s pose cannot be guaranteed. Hence, external
information is still needed to aid in the accurate localization
of the vehicle. The next section presents a multi-aiding
observation method used for reliable and accurate INS.

III. THE INS PREDICTION MODEL AND THE

MULTI-AIDING OBSERVATION MODEL

The last section aimed at reducing the noise in the raw
accelerometer data. This section will present how the noise
reduced inertial data can be used to produce the vehicle’s
position, velocity and attitude information accurately, with
the multi-aiding information from external sensors.

Typical INS sensors contain a triad of orthogonal ac-
celerometers (translatory rate sensors) as well as gyro-
scopes (angular rate sensors). By integrating the acceler-
ations and angular rates from an IMU, the autonomous
vehicles’ pose, that is, the attitude, velocity and position
can be computed. In this paper, the objective is to use a
multi-aiding method to bound the errors in the estimated
INS states after the noise is estimated and subtracted as
in section II. A standard Kalman filter (KF) is used to
combine the inertial information and the multi-aiding data.

The state vector X of the KF is:

X = [δPn
T , δVn

T , δΨn
T ]T (12)

where, δPn, δVn and δΨn are position, velocity and
attitude error vectors of the INS in the navigation frame
(denoted by subscript n) respectively and Ψn consists
of γ, β, θ, which are yaw, pitch and roll angles in Euler
representation. The state equation is:

Ẋ = f(X, u) (13)

where, f will be defined in equation 15. The input is:

u = [AT
b ,ωT

b ]T (14)

where, Ab and ωb are the acceleration vector and angular
rate vector in the body frame1 (denoted by subscript b).

The Pinson error model [11] is used here as the dynamic
error propagation model of the INS. That is, the position,
velocity and attitude error propagation equations can be
written as

˙δPn = δVn (15)
˙δVn = An × δΨn + Cn

b δAb

˙δΨn = −Cn
b δωb

where it should be noted that An and Cn
b are functions

of the input vector u. In equation 15, δAb and δωb are
the uncertainties in the accelerometers and gyroscopes in
the body frame. These errors can be evaluated accurately
when the vehicle is stationary and an initial alignment and
calibration has been carried out with the IMU [12], [5].
Hence the state model in Eqn. 15 can be reduced to⎡

⎣
˙δPn

˙δVn

˙δΨn

⎤
⎦ =

⎡
⎣0 I 0

0 0 An×
0 0 0

⎤
⎦

⎡
⎣ δPn

δVn

δΨn

⎤
⎦ = F

⎡
⎣ δPn

δVn

δΨn

⎤
⎦ (16)

where, An× is the acceleration in the navigation frame
represented in a skew-symmetric form. In equation 16, the
bias components of the δAb and δωb are assumed to be
removed from equation 15 after the initial alignment and
calibration and it is further assumed that the remaining
components in these error terms can be ignored. The
effectiveness of the initial alignment and calibration is
shown in [5], where the bias components of the inertial
sensors are calibrated by tilt sensors when the vehicle is
stationary.

1Please refer to [3] for details on different attitude representations and
frames of INS.



Equation 16 is the fundamental equation that enables the
computation of the state X of the vehicle from an initial
state X(0) and the inputs Ab and ωb. The process model
F comprises time-varying terms, An×. Thus, numerical
methods are used to determine it. Because the update
frequency of F is much larger than the frequency of the
land-borne vehicle’s dynamics during the sampling interval
∆t, equation 16 can be discretized using the discrete
transition matrix F(k)

F(k) = exp(F∆t)

= I + F∆t +
(F∆t)2

2!
+ ...

(17)

The discretization is only taken to the first order term since
any higher order terms are of negligible value for small ∆t.

The discretization of the state prediction equation is
approximated as

X̂(k|k − 1) = F(k)X̂(k − 1|k − 1) (18)

Since the acceleration and angular rate input vector u
affects An in the process model directly, there is no control
vector in the state update equation. The resulting system is
linear but F(k) must be updated with the input vector u at
each time step.

The IMU is initially aligned and calibrated by using
Nebot’s algorithm [5] and all the electrical and gravitational
component biases are assumed removed, thus the initial
prediction of the state errors X(1|0) is 0. However, a
corresponding growth in uncertainty in the states due to
the drift in the IMU should be evaluated by the predicted
covariance matrix

P(k|k − 1)

= E
[
(X(k) − X̂(k|k − 1)(X(k) − X̂(k|k − 1))T |Zk−1

]
= F(k)P(k − 1|k − 1)F(k)T + Q(k) (19)

This 9 × 9 matrix represents the uncertainty in the IMU
predicted errors, in which Q(k) is the process noise matrix
and Zk−1 represents all the observation information up to
time step k − 1.

The multi-aiding method for INS described in [2] is
applied here to make a reliable INS based navigation
system. The vehicle constraints, used as a “virtual sensor”,
together with the encoders and a single-axis gyroscope,
will be integrated together to provide velocity and attitude
observations for the INS.

In figure 3, P and Q define the offset distances of the
IMU mounted on the vehicle to the center of the vehicle’s
rear axle. L is the length of the vehicle’s wheelbase and it is
assumed that the actual radii of the vehicle’s rear wheels
are the same, R. When the vehicle is performing a turn,
Rrr and Ri are the radii of curvature of the path taken by
the rear right wheel and the IMU respectively about the
instantaneous center of rotation (ICR, denoted by “O” in
the figure). According to the assumption that the vehicle
is rigid, the angular rate at which any point on the vehicle
rotates about “O” is the same, ωv . The forward velocity

Fig. 3. Vehicle kinematics for a car-like vehicle with encoders
and an IMU.

of the vehicle is vr and the velocities in the IMU’s body
frame along the x and y axes are vx and vy respectively. It
is possible to combine the pair of wheels on the rear axle
and replace them with a single virtual wheel which lies at
the center of the rear axle. The rear left, right and virtual
wheels have angular velocities ωrl, ωrr and ωr respectively
and the first two angular velocities can be calculated from
the encoders mounted on the pair of rear wheels directly.
ωr can simply be calculated as

ωr =
1
2
(ωrl + ωrr) (20)

By geometry,

Rrr =
ωrrL

ωrl − ωrr
(21)

Since,

Vr = ωrR = ωv(Rrr +
L

2
)

ωv =
ωrR

Rrr + L
2

the velocity of the IMU, Vi is,

Vi = ωvRi =
ωrR

Rrr + L
2

× Rrr + L
2 − Q

cos θ

while θ is then given by,

tan θ =
P

Rrr + L
2 − Q

Hence, the velocities in the IMU’s body frame along the x
and y axes, vx and vy are,

vx = Vi cos θ =
ωrR

Rrr + L
2

× (Rrr +
L

2
− Q) (22)

vy = Vi sin θ =
ωrPR

Rrr + L
2

(23)

where, ωr and Rrr are defined in equations 20 and 21.
Hence the observed velocities vx and vy of the IMU in the
body frame, using the two encoders mounted on the rear
wheels of the vehicle, can be estimated.

Under ideal conditions, when the vehicle moves on a
surface, it does not leave the ground, which means there is



no motion normal to the road surface (z-axis in the body
frame) [6]. In practical situations, an approximation can be
made to model the constraint violations due to vibrations
caused by the vehicle and road imperfections as follows:

vz = νz (24)

where, νz is a Gaussian white noise source with zero mean
and variance σ2

z .
In practical operation, when the odometry information

is available, vx and vy are obtained by using equations 22
and 23. While at the same time, vz = νz is provided by
the “virtual sensor”. Hence the velocity observation can be
made,

zvelocity
V (k) = Cn

b

⎡
⎣ vx(k)

vy(k)
vz(k)

⎤
⎦

=

⎡
⎣vx(k) cos β cos γ+vy(k)(− cos θ sin γ+sin θ sin β cos γ)

vx(k) cos β sin γ+vy(k)(cos θ cos γ+sin θ sin β sin γ)

−vx(k) sin β+vy(k) sin θ cos β

⎤
⎦(25)

Thus the observation vector of the KF is

z(k) = zinertial
V (k) − zaiding

V (k) (26)

In order to make the attitude also observable so that the
error growth of the INS can be further reduced, a single-
axis gyroscope is mounted, aligned with the center line of
the vehicle to measure the its heading angle. This model
is simply

γ̇ = Γ̇ (27)

where, Γ̇ is the angular rate reading from the gyroscope.
It is beneficial to use this single-axis gyroscope to provide
the heading observation for the INS if the gyroscope is
more accurate than the yaw axis gyro within the INS. As
is the case here, it is now possible to find commercially
available, low-cost, relatively accurate gyroscopes and the
one adopted in our work is the KVH DSP-5000 fiber optic
gyro. The bias level of this model (1o/hr) is much lower
than the gyros contained in the IMU (5o/hr).

The best estimate for the state vector X can be obtained
based on all the observations. When an observation from
an aiding sensor, that is the encoders, the “virtual sensor”
or the gyroscope, is available, the observation vector is

z(k) =
[

zinertial
V (k) − zaiding

V (k)
zinertial
γ (k) − zgyro

γ (k)

]
(28)

The observation is the error between the velocities and yaw
angle of the INS and those of the aiding sensors, and the
uncertainty in this observation is reflected by the noise of
the aiding observation.

Hence the observation matrix is

H(k) =

⎡
⎢⎢⎣

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎦ (29)

And now the observation equation is

z(k) = H(k)X + ν (30)

where ν is the observation noise vector, the value of
which has been determined experimentally. The updating
equations of the KF are standard and omitted here [11].
Once the observations are formed, the state vector can
be updated. Hence, the vehicle constraints, odometry and
gyroscope can be used to aid the INS to form a reliable
localization system and produce position, velocity and
attitude estimation of the vehicle.

IV. RESULTS

In this section, experimental results will be presented to
prove the effectiveness of noise estimation and the multi-
aiding method. Firstly, the initial calibration and alignment
method in [5] is carried out with the IMU. Secondly
the noise analysis in the section II is conducted and the
estimated noise is subtracted from the accelerations in
each of the IMU’s axes. Then the prediction model and
observation model in section III is used to compute the
vehicle’s position, velocity and attitude.

The testing pickup truck with all the mounted sensors
used here, is shown in figure 4. The inertial sensor used
in this work is a low-cost IMU from Inertial Science,
DMARS-I. The IMU together with tilt sensors (for initial
calibration) and the single-axis gyroscope were mounted
on a rigid platform, which was placed on top of the
pickup. A digital Honeywell compass was also used to
provide the initial heading of the vehicle. The encoders
were mounted on the rear wheels as depicted in the figure.
A Trimble DGPS was also used in the experiments and the
INS/GPS data was fused by using the algorithm in [12].
The INS/GPS result was the best ground truth available,
since GPS alone produced large jumps in the estimated
vehicle path due to multiple GPS reflections.

(a) (b)

Fig. 4. The testing pickup truck with mounted sensors (each sensor is
labelled). A DGPS is used to be fused with INS to produce the ground
truth for the experiments.

In the experiments, we ran the utility vehicle in an out-
door, undulating environment (on the campus of Nanyang
Technological University). The altitude of this environment
ranges from 8 to 38 meters below the sea level. The whole
path is approximately 1.6 km in length and the vehicle ran
for approximately 4 minutes to complete one loop.

Figure 5 compares the velocities in the North and East
directions from the free running INS using the raw data



and the free running INS using noise reduced data, with
INS/GPS data as the ground truth, in one experiment. The
velocities from these two free INS are close to each and
deviate obviously from the ground truth, in both directions.
Although the proposed MCRA method is effective in
reducing the noise level of the raw IMU data (as shown in
figure 2), it only slightly contributes in reducing the errors
in the velocities and then the positions. The reason is that in
the raw inertial data, biases rather than noise are dominant
errors. Hence initial alignment and calibration or in-flight
alignment is fundamental in correctly using the IMUs to
provide vehicles’ navigation information ([5], [6]). Yet the
MCRA method still helps in terms of reducing the noise
and hence it is still useful when the accelerations are used
as direct inputs for the system in some applications.
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Fig. 5. The comparison of velocities in the North and East
directions from the free running INS and the free running INS
using noise reduced data, with INS/GPS data as the ground truth.

In the following, results from three different kinds of
inertial navigation methods, namely the free running INS,
the multi-aided INS using noise reduced data (MCRA
aided INS in short) and the INS/GPS method, are used
for comparison.

The map of the environment and the path is shown in
figure 6.

INS/GPS
MCRA Aided INS

Fig. 6. The red curve is the path from INS/GPS as the ground
truth. The cyan one is the MCRA aided INS path.

In figure 6, the red curve shows the path generated from

the INS/GPS integration technique, while the cyan one is
the path from the multi-aiding method using noise reduced
inertial data by applying the MCRA method. Compared to
the INS/GPS result, the MCRA aided INS path was a little
offset from the ground truth.

Figure 7 shows the path from the free running INS,
compared with the two paths in figure 6. Even after initial
calibration, without any kind of aiding, the free INS can
only function for a short period of time accurately as
expected. The mean position errors of the free INS result
are 461m and 814m in the North and East directions
respectively, which are much larger than those of the
MCRA aided INS, 7.3m and 5.5m.
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Fig. 7. The generated paths from the three localization methods.
The red and cyan curves are from the INS/GPS and MCRA aided
INS respectively. The large curve is the result of the free INS.

Figure 8 shows the velocity comparison from the 3
different INS methods. The velocities in the north and east
directions have been plotted from each localization method.
It is clear that after initial calibration, estimation of the
velocities from the free running INS soon diverges while
the MCRA aiding method followed the ground truth well
throughout the process. The mean velocity errors of the
free INS result are 7.9m/s and 9.4m/s in the North and
East directions respectively, while those of the aided INS
are reduced to 0.29m/s and 0.21m/s.
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Fig. 8. The comparison of velocities in the North and East
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Figure 9 shows the velocities as well as the positions in
the “down” direction estimated using the 3 different INS



methods. Since the vehicle ran in a 3D environment, the
pose estimation in this “down” direction is also important.
It is seen that the velocity and position estimation from the
MCRA aided INS follows the INS/GPS estimates much
better than those estimated in the free running INS.
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In figure 10 the headings of the vehicle from the
INS/GPS and the multi-aiding method are shown. Due
to the single-axis gyroscope, the heading estimation of
the multi-aiding method is relatively accurate. The mean
heading error is only 1o around.
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Fig. 10. The upper graph is the comparison of the headings of
the vehicle from the INS/GPS (red curves) and the MCRA aided
INS (cyan curves) and the lower graph is the heading errors of
the MCRA aided INS.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, noise estimate on the accelerometers within
IMUs and a multi-aided inertial based method has been
presented for outdoor ground vehicles. The noise analysis
method estimates the noise in the acceleration by averaging
past signals and using a hypothesis test. Result shows that
the noise level in the raw accelerations has been reduced.
The multi-aiding information is from odometry, a single-
axis gyroscope and vehicle constraints.

Experimental results from the noise-reduction and multi-
aiding method have been compared with the standard
INS/GPS fusion method and a free running INS method.
From the results, it can be seen that the position and veloc-
ity estimates could be only slightly improved if applying
the noise reduction method only to the raw inertial data.
Results also show that even without the help of GPS, the
proposed MCRA aided INS can still provide reasonable
position, velocity and attitude estimation when a vehicle
operates in outdoor non-flat environments.

In order to make this INS system more robust and accu-
rate, it will be interesting to estimate the bias components
in the IMU data as well. If the bias components can
be estimated precisely, the INS accuracy can be further
improved and less external sensors may be needed to aid
the IMU.
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