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Abstract— A good localization ability is essential for an
autonomous vehicle to perform any functions. For ground
vehicles operating in outdoor, uneven and unstructured envi-
ronments, the localization task becomes much more difficult
than in indoor environments. In urban or forest environments
where high buildings or tall trees exist, GPS sensors also fail
easily. The main contribution of this paper is that a multi-
aided inertial based localization system has been developed
to solve the outdoor localization problem. The multi-aiding
information is from odometry, an accurate gyroscope and
vehicle constraints. Contrary to previous work, a kinematic
model is developed to estimate the inertial sensor’s lateral
velocity. This is particularly important when cornering at
speed, and side slip occurs. Experimental results are presented
of this system which is able to provide a vehicle’s position,
velocity and attitude estimation accurately, even when the
testing vehicle runs in outdoor uneven environments.

I. INTRODUCTION

Much effort has been concentrated on solving the fa-
mous simultaneous localization and map building (SLAM)
problem for mobile robots exploring indoor environments
[2],[7],[9]. Contrary to fairly flat and structured indoor
environments, it is much more difficult for mobile robots
to localize in general outdoor locations. Firstly, wheel
encoders suffer much larger systematic errors for heading
estimation when the vehicles run on uneven surfaces.
Secondly, outdoor environments are often semi-structured
or even totally unstructured, which causes feature detection
and data association methods [5], [13], widely used in
indoor cases, to fail.

A straightforward solution to the problem of localization
in outdoor environments is the use of the Global Posi-
tioning System (GPS). However the application of GPS
is subject to multi-path errors and the problem of limited
view of enough satellites, especially in urban or forest areas
where high buildings or tall trees exist. Further, GPS can
be easily jammed and it maybe totally unavailable, for
example, in planetary exploration applications.

Due to the fragile nature of GPS data, more robust meth-
ods of localisation need to be found for ground vehicles in
outdoor environments. Inertial navigation system are non-
jammable and self-contained and can provide pose estima-
tion in 3D due to a triad of orthogonal accelerometers and
gyroscopes. Low-cost inertial measurement units (IMUs)
are increasingly being made commercially available and
the use of INS in automotive applications has increased
in the past decade. Since rate information has to be
integrated to produce velocity, position and attitude, the

small errors in the rate measurements will cause accu-
mulated unbounded errors in the integrated measurements.
Hence, usually IMUs are combined with external sensors
to produce effective vehicle pose information.

It is typical to use GPS as the absolute data source to
bound INS errors and many INS/GPS navigation systems
for autonomous land-borne applications have been devel-
oped successfully [14], [15], [16]. Under the consideration
that GPS is unavailable, other methods to bound the errors
of INS exist in the literature. Barshan et al modelled the
biases and drifts of inertial sensors as exponential functions
of time, and estimated an augmented mobile robot pose
state, which contained these bias terms [1]. In [8] and
[10], data from odometry and gyroscopes have been fused
together for localization. In [11], a method was presented
for combining odometry and inertial information to provide
an estimate of the six degrees of freedom of a rough terrain
rover. Gamini et al [6] put forward an on-the-fly alignment
method by using the constraints that govern the motion
of a vehicle to improve the accuracy of low-cost INS.
They made the INS velocities observable by using these
constraints and odometric information. Limitations of their
method are that the position and attitude are not observable
directly. The constraints presented in [6] are often violated
in actual applications especially if the vehicle negotiates
a bend. In this case side slip, caused by the centripetal
forces, is not negligible, and modelling the lateral velocity
as Gaussian white noise becomes inadequate.

The main contribution of this paper is that a multi-aided
inertial navigation system for outdoor ground vehicles has
been developed. Two wheel encoders’ data will be fed
into a kinematic model to provide the velocity estimate
which should be measured by the INS by considering
its location on the vehicle. Hence the vehicle’s lateral
velocity becomes observable and can always be estimated
even when it negotiates a turn. An accurate single-axis
gyroscope is used to estimate the vehicle’s heading angle.
The vehicle constraints used in [6] are also used here to
make the system more robust. A standard Kalman filter
(KF) is adopted to fuse the INS data with the multi-aiding
information.

The INS prediction model will be introduced in section
II and the multi-aiding method utilising odometry, an
additional gyroscope and vehicle constraint information
will be presented in section III. In section IV, experimental
results, which demonstrate the robust localisation of a
utility vehicle, in an outdoor environment, using a lateral



velocity estimator, are shown.

II. THE INS PREDICTION MODEL

Typical INS sensors contain a triad of orthogonal ac-
celerometers (translatory rate sensors) as well as gyro-
scopes (angular rate sensors). By integrating the accelera-
tion and angular rate readings from IMU, the autonomous
vehicles’ pose, that is, the attitude, velocity and position
can be computed. In this paper, the objective is to use a
multi-aiding method to bound the errors in the estimated
INS states. A standard Kalman filter is used to combine
the inertial information and the multi-aiding data. The state
vector X of the KF is:

X = [δPn
T , δVn

T , δΨn
T ]T (1)

where, δPn, δVn and δΨn are position, velocity and
attitude error vectors of the INS in the navigation frame
(denoted by subscript n) respectively and Ψn consists
of γ, β, θ, which are yaw, pitch and roll angles in Euler
representation. The state equation is:

Ẋ = f(X, u) (2)

where, f will be defined in Eqn. 4. The input is:

u = [AT
b ,ωT

b ]T (3)

where, Ab and ωb are the acceleration vector and angular
rate vector in the body frame1 (denoted by subscript b).

The Pinson error model [12] is used here as the dynamic
error propagation model of the INS. That is, the position,
velocity and attitude error propagation equations can be
written as

˙δPn = δVn (4)
˙δVn = An × δΨn + Cn

b δAb

˙δΨn = −Cn
b δωb

where it should be noted that An and Cn
b are functions

of the input vector u. In Eqn. 4, δAb and δωb are the
uncertainties in the accelerometers and gyroscopes in the
body frame. These errors can be evaluated accurately
when the vehicle is stationary and an initial alignment and
calibration has been carried out with the IMU [14], [4].
Hence the state model in Eqn. 4 can be reduced to⎡

⎣
˙δPn

˙δVn

˙δΨn

⎤
⎦ =

⎡
⎣0 I 0

0 0 An×
0 0 0

⎤
⎦

⎡
⎣ δPn

δVn

δΨn

⎤
⎦ = F

⎡
⎣ δPn

δVn

δΨn

⎤
⎦ (5)

where, An× is the acceleration in the navigation frame
represented in a skew-symmetric form. In Eqn. 5, the bias
components of the δAb and δωb are assumed to be removed
from Eqn. 4 after the initial alignment and calibration and it
is further assumed that the remaining components in these
error terms can be ignored. The effectiveness of the initial
alignment and calibration is shown in [4], where the bias
components of the inertial sensors are calibrated by tilt

1Please refer to [3] for details on different attitude representations and
frames of INS.

sensors when the vehicle is stationary, giving good pose
estimation over an extended time.

Eqn. 5 is the fundamental equation that enables the
computation of the state X of the vehicle from an initial
state X(0) and the inputs Ab and ωb. The process model
F comprises time-varying terms, An×. Thus, numerical
methods are used to determine it. Because the update
frequency of F is much larger than the frequency of the
land-borne vehicle’s dynamics during the sampling interval
∆t, Eqn. 5 can be discretised using the discrete transition
matrix F(k)

F(k) = exp(F∆t)

= I + F∆t +
(F∆t)2

2!
+ ...

(6)

The discretisation is only taken to the first order term since
any higher order terms are of negligible value for small ∆t.

The discretisation of the state prediction equation can
obtained as

X̂(k|k − 1) = F(k)X̂(k − 1|k − 1) (7)

Since the acceleration and angular rate input vector u
affects An in the process model directly, there is no control
vector in the state update equation. The resulting system is
linear but F(k) must be updated with the input vector u at
each time step.

The IMU is initially aligned and calibrated by using
Nebot’s algorithm [4] and all the errors are removed, thus
X(1|0) is set to zero. However, a corresponding growth in
uncertainty in the states due to the drift in the IMU should
be evaluated by the predicted covariance matrix

P(k|k − 1)

= E
[
(X(k) − X̂(k|k − 1)(X(k) − X̂(k|k − 1))T |Zk−1

]
= F(k)P(k − 1|k − 1)F(k)T + Q(k) (8)

This 9 × 9 matrix represents the uncertainty in the IMU
predicted errors, in which Q(k) is the process noise matrix
and Zk−1 represents all the observation information up
to time step k − 1. The observation information will be
described in the following section.

III. MULTI-AIDING INFORMATION FOR INS

The aim of this section is to make a robust INS based
navigation system, as depicted in figure 1. The vehicle
constraints, used as a “virtual sensor”, together with the
encoders and a single-axis gyroscope, will be implemented
and this subsystem will provide not only velocity obser-
vations from the encoders and the “virtual sensor”, but
also attitude observation from the gyroscope. Hence this
multi-aided INS should provide accurate pose predictions
for autonomous vehicles. In this section it will be shown
how the multi-aiding information can be used to keep the
INS errors constrained to a reasonable level.

Under ideal conditions, when the vehicle moves on a
surface, it does not slide or leave the ground, which means
there is negligible side slip along the lateral direction of the
vehicle (y-axis in the body frame) and no motion normal



Fig. 1. A multi-aided inertial navigation system. The INS block
represents the IMU sensor and the algorithms which carry out
the basic inertial computations. The inputs to this block are the
Kalman filter estimates.

to the road surface (z-axis in the body frame) [6]. Thus,
reasonable constraints for the vehicle’s motion are:

vy = 0
vz = 0 (9)

where, vy and vz are velocities along the y and z axes in
the body frame respectively.

In practical situations, an approximation can be made
to model the constraint violations due to side slip and
vibrations caused by the vehicle and road imperfections
as follows:

vy = νy (10)

vz = νz (11)

where, νy and νz are Gaussian white noise sources with
zero mean and variances σ2

y and σ2
z respectively.

In figure 2, the forward velocity vx of the IMU along the
x axis in the body frame can also be calculated by using the
velocity of the vehicle Vr , which can be calculated from
the wheel incremental encoders directly. Figure 2 presents
how the forward velocity vx of the IMU is related to the
vehicle’s forward velocity Vr .

The vehicle constraints can, however, often be violated,
meaning that this model would fail when the vehicle turns,
and the side slip is not negligible, which is unavoidable
in actual applications. The vehicle would then suffer a
considerable lateral velocity and it would therefore not
be appropriate to model the side velocity vy in the body
frame as a white Gaussian noise source. This is especially
important when the vehicle has to run in actual urban or
forest environments where many sharp turns have to be
made. In this section a kinematic model solves this problem
by using odometric information to estimate the IMU’s body
velocities as part of the IMU’s kinematic model.

Ideally, an IMU should be mounted exactly at the center
of gravity of the vehicle. However, there is usually some
offset in actual experiments. In figure 2, P and Q define
the offset distances of the IMU mounted on the vehicle
to the center of the vehicle’s rear axle. L is the length of
the vehicle’s wheelbase and it is assumed that the actual
radii of the vehicle’s rear wheels are the same, R. When

Fig. 2. Vehicle kinematics for a commonly used vehicle with
encoders and an IMU.

the vehicle is performing a turn, Rrr and Ri are the radii
of curvature of the path taken by the rear right wheel
and the IMU respectively about the instantaneous center
of rotation (ICR, denoted by “O” in the figure). According
to the assumption that the vehicle is rigid, the angular rate
at which any point on the vehicle rotates around “O” is
the same, ωv . The forward velocity of the vehicle is vr

and the velocities in the IMU’s body frame along the x
and y axes are vx and vy respectively. It is possible to
combine the pair of wheels on the rear axle and replace
them with a single virtual wheel which lies at the center of
the rear axle. The rear left, right and virtual wheels have
angular velocities ωrl, ωrr and ωv respectively and the first
two angular velocities can be calculated from the encoders
mounted on the pair of rear wheels directly. The angular
velocity of the virtual wheel can simply be calculated as,

ωr =
1
2
(ωrl + ωrr) (12)

By geometry,

Rrr =
ωrrL

ωrl − ωrr
(13)

Since,

Vr = ωrR = ωv(Rrr +
L

2
)

ωv =
ωrR

Rrr + L
2

The velocity of the IMU, Vi is,

Vi = ωvRi =
ωrR

Rrr + L
2

× Rrr + L
2 − Q

cos θ

While θ is then given by,

tan θ =
P

Rrr + L
2 − Q

Hence, the velocities in the IMU’s body frame along the x
and y axes, vx and vy are,

vx = Vi cos θ =
ωrR

Rrr + L
2

× (Rrr +
L

2
− Q) (14)

vy = Vi sin θ =
ωrPR

Rrr + L
2

(15)



where, ωr and Rrr are defined in Eqns 12 and 13. Hence
the observed velocities vx and vy of the IMU in the body
frame, using the information from two encoders mounted
on the rear wheels of the vehicle, can be estimated.

Now it possible to obtain a set of velocities in the body
frame by combining vz from the “virtual sensor” (Eqn. 11)
and vx and vy from the kinematic model (Eqns. 14 and 15)
to calculate the corresponding velocities in the navigation
frame. It can be seen that only the velocity sub-state of the
state vector

X = [δPn
T , δVn

T , δΨn
T ]T

is currently observable. In practical operation, when the
odometry information is available, vx and vy are obtained
by using Eqns 14 and 15. While at the same time, vz =
νz is provided by the “virtual sensor”. Hence the velocity
observation can be made,

zvelocity
V (k) = Cn

b

⎡
⎣ vx(k)

vy(k)
vz(k)

⎤
⎦

=

⎡
⎣vx(k) cos β cos γ+vy(k)(− cos θ sin γ+sin θ sin β cos γ)

vx(k) cos β sin γ+vy(k)(cos θ cos γ+sin θ sin β sin γ)

−vx(k) sin β+vy(k) sin θ cos β

⎤
⎦(16)

Thus the observation vector of the KF is

z(k) = zinertial
V (k) − zaiding

V (k) (17)

In order to make the attitude also observable so that the
error growth of the INS can be further reduced, an accurate
single-axis gyroscope is mounted, aligned with the center
line of the vehicle to measure the its heading angle. This
model is quite simple, in which,

γ̇ = Γ̇ (18)

where, Γ̇ is the angular rate reading directly from the
gyroscope. It is beneficial to use this accurate single-axis
gyroscope to provide the heading observation for the INS
if the gyroscope is more accurate than the yaw axis gyro
within the INS. As the case here, it is now possible to
find commercially available low-cost accurate gyroscopes
and the one adopted in our work is a model from KVH,
a DSP-5000 fiber optic gyro. The bias level of this model
(1o/hr) is much smaller than the gyros contained in the
IMU (5o/hr). Now, based on all the observations, the best
estimate for the state vector X can be obtained.

When an observation from an aiding sensor, that is the
encoders, the “virtual sensor” or the gyroscope, is available,
the observation vector is

z(k) =
[

zinertial
V (k) − zaiding

V (k)
zinertial
γ (k) − zgyro

γ (k)

]

=
[

(VT (k) + δV (k)) − (VT (k) − νV (k))
(γT (k) + δγ(k)) − (γT (k) − νγ(k))

]

=
[

δV (k)
δγ(k)

]
+

[
νV (k)
νγ(k)

]
(19)

where, VT (k) and γT (k) are the true values of the velocities
and yaw angle and νV (k) and νγ(k) are noises of the

aiding sensors at time k respectively. The observation is
thus the error between the velocities and yaw angle from
the INS and those of the aiding sensors, and the uncertainty
in this observation is reflected by the noise of the aiding
observation.

Hence the observation matrix is

H(k) =

⎡
⎢⎢⎣

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎦ (20)

And now the observation equation is

z(k) = H(k)X + ν (21)

where ν is the observation noise vector, the value of which
has been determined experimentally. The updating equa-
tions of the KF are standard and omitted here. Once the
observations are formed, the state vector can be updated.
Hence, the vehicle constraints, odometry and gyroscope can
be used to aid the INS to form a robust localization system
and produce position, velocity and attitude estimation of the
vehicle.

IV. RESULTS

In this section, the experimental results will be presented
to prove the effectiveness of the multi-aiding method. The
testing vehicle is a utility pickup truck. The truck, with
all the mounted sensors, is shown in figure 3. The inertial
sensor used in this work is a low-cost IMU from Inertial
Science, DMARS-I. The IMU together with tilt sensors
(for initial calibration) and the single-axis gyroscope were
mounted on a rigid platform, which was put on top of
the pickup. A digital Honeywell compass was also used
to provide the initial heading of the vehicle. The encoders
were mounted on the rear wheels as depicted in the figure.
A Trimble DGPS was also used in the experiments and the
INS/GPS data was fused by using the algorithm in [14].
The INS/GPS result was the best ground truth available,
since GPS alone produced large jumps in the estimated
vehicle path.

Results from three different kinds of inertial navigation
methods, namely the free running INS, the multi-aided INS
and the INS/GPS method, are used for comparison.

(a) (b)

Fig. 3. The testing pickup truck with mounted sensors.



In the experiments, we ran the utility vehicle in an
outdoor, undulating environment which is on the campus
of Nanyang Technological University. The altitude of this
environment ranges from 20 to 50 meters. The whole
path is around 1.1 km in length and the vehicle ran for
approximately 3 minutes to complete one loop. The map
of the environment and the path is shown in figure 4.

INS/GPS

Aided INS

Fig. 4. The testing environment.

In figure 4, the red line shows the path generated from
the INS/GPS integration technique, while the cyan line is
the path from the multi-aiding method. Compared to the
INS/GPS result, the aided INS path was a little offset from
the ground truth. Yet, even in the INS/GPS path (assumed
to be the ground truth), there were some discontinuities
due to the GPS errors. Figure 5 shows the path from the
free running INS, compared with the two paths in figure 4.
Even after initial calibration, if without any kind of aiding,
the free INS can only last for a limited period of time
accurately as expected. The mean position errors of the
free INS result are 345m and 106m in North and East
directions respectively, which are much larger than those
of the aided INS, 3.7m and 7.5m.
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Fig. 5. The generated paths from three methods.

Figure 6 shows the velocity comparison from the 3
different INS methods. The velocities in the north and
east directions have been plotted from each method. It is
clear that after initial calibration, estimation of velocities
from the free running INS soon diverges while the multi-
aiding method followed the ground truth well all through
the process. The mean velocity errors of the free INS result
are 11.6m/s and 6.4m/s in North and East directions
respectively, while those of the aided INS are reduced to
0.31m/s and 0.32m/s.
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Fig. 6. The comparison of velocities from three methods.

Figure 7 shows the velocity error comparison from the
free running INS and the multi-aiding method, using the
velocity from the INS/GPS method as the ground truth. The
red lines are the 2σ error bound of the multi-aiding method,
calculated from the appropriate velocity error terms in the
estimated error covariances matrix P(k | k).
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Aided INS.

Figure 8 shows the velocities as well as positions in
the “down” direction estimated using the 3 different INS
methods. Since the vehicle ran in a 3D environment, the
pose estimation in this “down” direction is also important.
It is seen that the velocity and position estimation from the
multi-aiding method follows the INS/GPS estimates much
better than those estimated in the free running INS.
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In figure 9 the headings of the vehicle from the INS/GPS
and the multi-aiding method are shown. Due to the accurate
single-axis gyroscope, the heading estimation of the multi-
aiding method is relatively accurate. The mean heading
error is only 1.4o.
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V. CONCLUSIONS AND DISCUSSIONS

In this paper, a robust multi-aided inertial based method
has been presented for outdoor ground vehicles. The multi-
aiding information is from odometry, an accurate single-
axis gyroscope and vehicle constraints. A kinematic model
has been developed to estimate the inertial sensor’s lat-
eral velocity when cornering is unavoidable within envi-
ronments. An accurate single-axis gyroscope is used to
make the heading estimate observable and hence accurate
heading estimate from low-cost IMUs can be achieved.
Experimental results from this method have been compared
with the standard INS/GPS fusion method and a free
running INS method. From the results, it can be seen
that even without the help of GPS, the multi-aided INS
can still provide reasonable position, velocity and attitude
estimation when the testing vehicle operates in outdoor
non-flat environments.

In order to make this INS system more robust and
accurate, it will be interesting to use GPS as additional

aiding information whenever it is available. In future work,
an investigation will be conducted, into which kinds of
aiding information, from GPS or from the multi-aiding
sensors, should be used to bound the error growth of
INS so that the INS can provide the most effective pose
estimation accurately and reliably. It will be interesting to
add new sensors, for example, an altimeter to the multi-
aiding system so that the “down” direction position of the
INS can also become observable and the inertial navigation
method could improve its accuracy in all directions.
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