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Abstract— In this paper, coupled dynamics are presented
for two cooperating mobile robotic manipulators manipulating
an object with relative motion in the presence of system
dynamics uncertainty and external disturbances. Centralized
robust adaptive controls are introduced to guarantee the motion
and force trajectories of the constrained object converge to the
desired manifolds with prescribed performance. The stability
of the closed-loop system and the boundedness of tracking
errors are proved using Lyapunov stability synthesis. The
tracking of the constraint trajectory/force up to an ultimately
bounded error is achieved. The proposed adaptive controls
are robust against relative motion disturbances and parametric
uncertainties and validated by simulation studies.

I. INTRODUCTION

The controls of multiple mobile manipulators present a

significant increase in complexity over the single mobile

manipulator case [1], [2], [3], [4], [5]. The difficulties of

the control problem lie in the fact that, when multiple

mobile manipulators coordinate each other, they form a

closed kinematic chain mechanism. This will impose a set

of kinematic and dynamic constraints on the position and

velocity of coordinated mobile manipulators. As a result,

the degrees of freedom of the whole system decrease, and

internal forces are generated which need to be controlled.

Thus far, there are two categories of coordination schemes

for multiple mobile manipulators reported in the literature.

These methods can be classified into two categories as: (i)

hybrid position force control by decentralized/centralized

scheme, where the position of the object is controlled in

a certain direction of the workspace, and the internal force

of the object is controlled in a small range of the origin

[1], [4]; (ii) leader-follower control for mobile manipulator,

where one or a group of mobile manipulators or robotic

manipulator play the role of the leader or master, which

track a preplanned trajectory, and the rest of the mobile

manipulators form the follow group which are moved in

conjunction with the leader mobile manipulators [2], [6].

However, in the hybrid position force control of con-

strained coordinated multiple mobile manipulator, such as

[1], [4], although the constraint object is moving, it is usually
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assumed, for the ease of analysis, to be held tightly and

thus has no relative motion with respect to the end effectors

of the mobile manipulators. These works have focused on

dynamics based on pre-defined, fixed constraints among

them. The assumption of these works are not applicable

to some applications which require both the motion of the

object and its relative motion with respect to the end effectors

of the manipulators, such as sweeping tasks and cooperating

assembly tasks by two or multiple mobile manipulators. The

object/tool is required to move with respect to not only the

world coordinates but also the end effectors of the mobile

manipulators. The motion of the object with respect to the

mobile manipulators can also be utilized to cope with the

limited operational space and to increase task efficiency.

Such tasks need simultaneously control of position and force

in the given direction, therefore, the impedance control like

[2], [6] may not be applicable.

Model-based and neural-network-based adaptive control

were developed for a class of constrained robots where one

robotic manipulator (manipulator I) performs constrained

motion on the surface of an object which is held tightly by

another robotic manipulator (manipulator II) [7]. Motivated

by the results, we investigate, in this paper, a similar class of

system where manipulators I and II are mobile manipulators.

Mobile manipulator II is to be controlled such that the

constraint object follows the planned trajectory, while mobile

manipulator I is to be controlled such that its end effector

follows a planned trajectory on the surface with the desired

contact force. We first present the dynamics of two mobile

robotic manipulators manipulating an object with relative

motion. This will be followed by centralized robust adaptive

control to guarantee the converge of of the motion/force

trajectories tracking of the constraint object under the pa-

rameters uncertainties and the external disturbances.

II. DESCRIPTION OF INTERCONNECTED SYSTEM

The system under study is schematically shown in Fig.

1. The object is held tightly by the end effector of mobile

manipulator II and can be moved as required in space. The

end effector of mobile manipulator I follows a trajectory on

the surface of the object, and at the same time exerts a certain

desired force on the object. The dynamics of the constrained

mobile manipulators can be described as

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + G1(q1) + d1(t) = B1τ1

+JT
1 λ1 (1)

M2(q2)q̈2 + C2(q2, q̇2)q̇2 + G2(q2) + d2(t) = B2τ2

+JT
2 λ2 (2)
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where Mi(qi) =

[

Mib Miva

Miab Mia

]

, Ci(q̇i, qi) =
[

Cib Ciba

Ciab Cia

]

, Gi(qi) =

[

Gib

Gia

]

, di(t) =
[

dib(t)
dia(t)

]

(i = 1, 2), λ1 =

[

λ1n

λc

]

, λ2 =

[

λ2n

λc

]

,

Mi(qi) ∈ Rni×ni is the symmetric bounded positive

definite inertia matrix, Ci(q̇, q)q̇ ∈ Rni denote the

Centripetal and Coriolis forces; Gi(q) ∈ Rni are the

gravitational forces; τi ∈ Rpi is the vector of control inputs;

Bi ∈ Rni×pi is a full rank input transformation matrix and

is assumed to be known because it is a function of the fixed

geometry of the system; di(t) ∈ Rni is the disturbance

vector; qi = [qib, qia]T ∈ Rni , and qib ∈ Rniv describe the

generalized coordinates for the mobile platform; qia ∈ Rnia

are the coordinates of the manipulator, and ni = niv + nia;

Fi = JT
i λi ∈ Rni denotes the vector of constraint

forces; AT
i λin = 0 satisfies the nonholonomic constraint;

λi = [λin, λc]
T ∈ Rpi with λin being the Lagrangian

multipliers with the nonholonomic constraints.

Assumption 2.1: The mobile manipulator is subject to

known nonholonomic constraints.

Remark 2.1: In actual implementation, we can adopt the

methods of producing enough friction between the wheels of

the mobile platform and the ground such that this assumption

holds.

Since Ai ∈ R(niv−m)×nv , it is always realizable to find

an m rank matrix Si ∈ Rniv×m formed by a set of smooth

and linearly independent vector fields spanning the null

space of Ai, i.e. ST
i AT

i = 0. Since Si = [si1, · · · , sim] is

formed by a set of smooth and linearly independent vector

fields spanning the null space of Ai, define an auxiliary

time function vib = [vib1, · · · , vibm]T ∈ Rm such that

q̇ib = Sivib = si1vib1+ · · ·+simvibm, which is the so-called

the kinematics of nonholonomic system. Let via = q̇ia. One

can obtain

q̇i = Ri(qi)vi (3)

where vi = [vib, via]T , and Ri(qi) = diag[Si, Inia×nia
].

Differentiating equation (3) yields

q̈i = Ṙi(qi)vi + Ri(qi)v̇i (4)

Substituting (4) into (1) and (2), and multiplying both sides

with RT
i (qi) to eliminate λin, yields:

Mi1(qi)v̇i + Ci1(qi, q̇i)vi + Gi1(qi) + di1(t) = Bi1(qi)τ

+JT
i1λi (5)

where Mi1(qi) = RT
i Mi(qi)Ri, Ci1(qi, q̇i) =

RT
i (qi)Mi(qi)Ṙi(qi) + RT

i Ci(qi, q̇i)Ri(qi), Gi1(qi) =
RT

i (qi)Gi(qi), di1(t) = RT
i (qi)di(t), Bi1 = R1

i (qi)Bi(qi),
JT

i1 = RT
i (qi)J

T
i , λi = λc.

There exist a coordinate transformation and a state feed-

back

ζi = [ζib, ζia]T = T1(qi)

= [T11(qib), q
1
ia, T12(qib, q

1
ia)]T (6)

vi = [vib, via]T = T2(qi)ui = [T21(qib)uib, uia]T (7)

with T2(q) = diag[T21(qiv), I] and u = [uib, uia]T , uia =
q̇ia, so that the kinematic system (3) could be locally or

globally converted to the chained form [8], [9]














ζ̇ib1 = ui1

ζ̇ibj = ui1ζib(j+1)(2 ≤ j ≤ nv − 1)

ζ̇ibnv
= ui2

ζ̇ia = q̇ia = uia

(8)

Consider the above transformations, the dynamic system

(1) and (2) could be correspondingly converted into the

following canonical transformation

Mi2(ζi)u̇i +Ci2(ζi, ζ̇i)ui +Gi2(ζi)+di2(t) = Bi2τi +JT
i2λi

(9)

Mi2(ζi) = TT
2 (qi)Mi1(q)T2(qi)|qi=T−1

1 (ζi)
,Ci2(ζi, ζ̇i) =

TT
2 (qi)[Mi1(qi)Ṫ2(qi) + Ci1(qi, q̇i)T2(qi)]|qi=T−1

1 (ζi)
,

Gi2(ζi) = TT
2 (qi)Gi1(qi)|qi=T−1

1 (ζi)
, di2(t) =

TT
2 (qi)si1(t)|qi=T−1

1 (ζi)
, Bi2 = TT

2 (qi)Bi1(qi)|qi=T−1
1 (ζi)

,

JT
i2 = TT

2 (qi)J
T
i1|q=T

−1
1 (ζi)

.

Assumption 2.2: The Jacobian matrix Ji2 is uniformly

bounded and uniformly continuous, if qi is uniformly

bounded and uniformly continuous.

Assumption 2.3: Each manipulator is redundant and op-

erating away from any singularity.

Remark 2.2: Under Assumptions 2.2 and 2.3, the Jaco-

bian Ji2 is of full rank. The vector qia ∈ Rnia can always

be properly rearranged and partitioned into qia = [q1
ia, q2

ia]T ,

q1
ia = [q1

ia1, . . . , q1
iaκi

] describes the constrained motion of

the manipulator and q2
ia ∈ Rnia−κi denotes the remaining

joints variables which make the arm redundant such that the

possible breakage of contact could be compensated.

Therefore, we have Ji2(qi) = [Ji2b, J
1
i2a, J2

i2a]. Con-

sidering the object trajectory and relative motion trajec-

tory as holonomic constraints, we could obtain q̇2
ia =

−(J2
i2a)−1[Ji2bq̇ib + J1

i2aq̇1
ia].

From (6) and (7), q̇ib = Si(qib)T21(qib)uib, we have

ui =





uib

q̇1
ia

−(J2
i2a)−1[Ji2bSi(qib)T21(qib)uib + J1

i2aq̇1
ia]





= Liu
1
i (10)

where

Li

=





I 0
0 I

−(J2
i2a)−1Ji2bSi(qib)T21(qib) −(J2

i2a)−1J1
i2a





u1
i =

[

uib q̇1
ia

]T

It is easy to know that LT
i J2T

i = 0.

Combining (9) and (10), we can obtain the following

compact dynamics:

Mu̇1 + Cu1 + G + d = Bτ + JT λ (11)

where M =

[

M12L1 0
0 M22L2

]

, L =

[

L1 0
0 L2

]

, C =
[

M12L̇1 + C12L1 0

0 M22L̇2 + C22L2

]

, G =

[

G12

G22

]

,
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d =

[

B12 0
0 B22

]

, d =

[

d12(t)
d22(t)

]

, τ =

[

τ1

τ2

]

, JT =
[

JT
12

JT
22

]

, λ = λc.

Property 2.1: Matrices M = LT M , G = LT G are uni-

formly bounded and uniformly continuous if ζ = [ζ1, ζ2]
T

is uniformly bounded and continuous, respectively. Matrix

C = LT C is uniformly bounded and uniformly continuous

if ζ̇ = [ζ̇1, ζ̇2]
T is uniformly bounded and continuous.

Property 2.2: ∀ζ ∈ R2n, 0 < λmin(M)I ≤ M(ζ) ≤ βI
where λmin is the minimal eigenvalue of M and β > 0.

III. ROBUST ADAPTIVE CONTROLS DESIGN

Let rd
o(t) be the desired trajectory of the object, rd

co(t) be

the desired trajectory on the object and λd
c(t) be the desired

constraint force. The first control objective is to drive the

mobile manipulators such that ro(t) and rco(t) track their

desired trajectories rd
o(t) and rd

co(t) respectively. The second

objective is to make λc(t) its desired trajectory λd
c(t). The

centralized control is used for two mobile manipulators.

Assumption 3.1: Time varying positive functions δk

and ας converge to zero as t → ∞ and satisfy

limt→∞

∫ t

0
δk(ω)dω = ak < ∞, and limt→∞

∫ t

0
ας(ω)dω =

bς < ∞ with finite constants ak with k = 1, . . . , 6, and bς

with ς = 1, . . . , 5 [11].

For the given ζd, the tracking errors are denoted as e =
ζ − ζd = [e1, e2]

T , ei = ζi − ζd
i and eλ = λc − λd

c . Define

the reference signals z = [z1, z2]
T and zi = [zib, zia]T as

zib =













uid1 + ηi

uid2 − si(niv−1)uid1 − kniv
siniv

+
∑niv−3

j=0
∂(einiv

−siniv
)

∂u
(j)

id1

u
(j+1)
id1

+
∑niv−1

j=2
∂(einiv

−siniv
)

∂eij
ei(j+1)













(12)

zia = q̇1d
ia − K1a(q1

ia − q1d
ia ) (13)

si =























ei1

ei2

...

einiv
+ si(niv−2) + kniv−1si(niv−1)u

2l−1
id1

− 1
uid1

∑niv−4
j=0

∂(ei(niv−1)−si(niv−1))

∂u
(j)

id1

u
(j+1)
id1

−
∑niv−2

j=2

∂(ei(niv−1)−si(niv−1))

∂eij
ei(j+1)























(14)

η̇i = −k0ηi − k1si1 −

niv−1
∑

j=2

sijζi(j+1)

+

niv
∑

k=3

sik

k−1
∑

j=2

∂(eik − sik)

∂eik

ζi(k+1) (15)

and l = niv−2, u
(l)
id1 is the lth derivative of uid1 with respect

to t, and kj is positive constants, Kia is diagonal positive.

Denote ũ = [ũb, ũa]T = u− z and define a filter tracking

error σ = ũ+Ku

∫ t

0
ũds with Ku = diag[0m×m,Ku1] > 0,

Ku1 ∈ R(nia−κi)×(nia−κi). We could obtain σ̇ = ˙̃u + Kuũ
and u = ν + σ with ν = z − Ku

∫ t

0
ũds.

We could rewrite (11) as

Mσ̇ + Cσ + Mν̇ + Cν + G + d = Bτ + JT λ (16)

If the system is certain, we could choose the control law

given by

Bτ = M(ν̇ − Kσσ) + C(ν + σ) + G + d − JT λh(17)

with diagonal matrix Kσ > 0. The force control input λh

as λh = λd − Kλλ̃ − KI

∫ t

0
λ̃dt, where λ̃ = λc − λd

c , Kλ

is a constant matrix of proportional control feedback gains,

and KI is a constant matrix of integral control feedback

gains. However, since M(ζ), C(ζ, ζ̇), G(ζ) are uncertain, to

facilitate the control formulation, the following assumption

is required.

Assumption 3.2: There exist some finite positive constants

b, cς > 0 (1 ≤ ς ≤ 4), and finite non-negative constant

cς ≥ 0 (ς = 5) such that ∀ζ ∈ R2n, ∀ζ̇ ∈ R2n, ‖∆M‖ =
‖M−M0‖ ≤ c1, ‖∆C‖ = ‖C−C0‖ ≤ c2+c3‖ζ̇‖, ‖∆G‖ =
‖G−G0‖ ≤ c4, and supt≥0||dL(t)|| ≤ c5, where M0, C0 and

G0 are nominal parameters of the system.

Let B = LT B, the proposed control for the system is

given as

Bτ = U1 + U2 (18)

where U1 is the nominal control, U1 = M0(ν̇ − Kσσ) +
C0(ν + σ) + G0, and U2 is designed to compensate for

the parameter errors arising from estimating the unknown

function M, C and G and the disturbance, respectively.

U2 = U21 + U22 + U23 + U24 + U25 + U26 (19)

U21 = −
β

λmin

ĉ2
1‖Kσσ − ν̇‖2σ

ĉ1‖Kσσ − ν̇‖‖σ‖ + δ1

U22 = −
β

λmin

ĉ2
2‖σ + ν‖2σ

ĉ2‖σ + ν‖‖σ‖ + δ2

U23 = −
β

λmin

ĉ2
3‖ζ̇‖

2‖σ + ν‖2σ

ĉ3‖ζ̇‖‖σ + ν‖‖σ‖ + δ3

U24 = −
β

λmin

ĉ2
4σ

ĉ4‖σ‖ + δ4

U25 = −
β

λmin

ĉ2
5‖L‖

2σ

ĉ5‖L‖‖σ‖ + δ5

U26 = −β
‖ũb‖‖Λ‖

2σ

‖Λ‖‖σ‖2 + δ6

where δk (k = 1, . . . , 6) satisfying Assumption 3.1, and

ĉς denoting the estimate cς , which are adaptively tuned

according to

˙̂c1 = −α1ĉ1 +
γ1

λmin

‖σ‖‖Kσσ − ν̇‖, ĉ1(0) > 0 (20)

˙̂c2 = −α2ĉ2 +
γ2

λmin

‖σ‖‖σ + ν‖, ĉ2(0) > 0 (21)

˙̂c3 = −α3ĉ3 +
γ3

λmin

‖σ‖‖ζ̇‖‖σ + ν‖, ĉ3(0) > 0 (22)

˙̂c4 = −α4ĉ4 +
γ4

λmin

‖σ‖, ĉ4(0) > 0 (23)

˙̂c5 = −α5ĉ5 +
γ5

λmin

‖L‖‖σ‖, ĉ5(0) > 0 (24)
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where ας > 0 satisfies Assumption 3.1 and γς > 0, (ς =
1, . . . , 5).

Theorem 3.1: Consider the mechanical system described

by (9), under Assumption 2.4, using the control law (18),

the following can achieved:

(i) ζ, ζ̇, λc converge to ζd, ζ̇d, λ
d
c as t → ∞; and

(ii) all the signals in the closed-loop are bounded for all

t ≥ 0.

Proof : Integrating the dynamic equation (16) together with

(14), (15) and (18), the close-loop system dynamics can be

written as

ṡi1 = ηi + ũi1 (25)

ṡi2 = (ηi + ũi1)ζi3 + si3uid1 − k2si2u
2l
id1 (26)

...

ṡiniv
= (ηi + ũi1)

niv−2
∑

j=2

∂(einiv
− siniv

)

∂eij

ζi(j+1)

−kniv
siniv

− si(niv−1)uid1 + ũi2 (27)

η̇i = −k0ηi − Λi1 (28)

Mσ̇ = −Mν̇ − C(ν + σ) − G − d + Bτ

+JT λ (29)

Let D = LT d. Multiplying LT on both sides of (29), using

(18), one can obtain

σ̇ = −Kσσ + M−1∆M(Kσσ − ν̇) −M−1∆C(ν + σ)

−M−1∆G −M−1D + M−1
6

∑

i=1

U2i (30)

Let c̃ς = ĉς − cς , Λ =
[

Λ1 Λ2

]T
, and Λi =









k1si1 +
∑nv−1

j=2 sijζi(j+1)

−
∑nv

j=3 sj

∑j−1
k=2

∂(eik−sik)
∂eik

ζi(k+1)

sinv

0









.

Consider the following positive definite functions:

V = V1 + V2 (31)

V1 =
1

2

2
∑

i=1

niv
∑

j=2

s2
ij +

1

2

2
∑

i=1

ki1s
2
i1 +

1

2

2
∑

i=1

η2
i

V2 =
1

2
σT σ +

5
∑

ς=1

1

2γς

c̃2
ς

Taking the time derivative of V1 with (25) - (28) results

V̇1 =

2
∑

i=1

niv−1
∑

j=2

sij ṡij +

2
∑

i=1

ki1si1ṡi1 +

2
∑

i=1

ηiη̇i

= −

2
∑

i=1

niv−1
∑

j=2

kijs
2
iju

2l
id1 −

2
∑

i=1

kiniv
s2

iniv

−

2
∑

i=1

k0η
2
i + ũT

b Λ (32)

Taking the time derivative of V2 and integrating (30) result

V̇2 = −σT Kσσ

+

[

σTM−1∆M(Kσσ − ν̇) + σTM−1
U21 +

1

γ1
c̃1

˙̂c1

]

+

[

−σTM−1∆C(σ + ν) + σTM−1
U22 +

1

γ2
c̃2

˙̂c2

]

+

[

σTM−1
U23 +

1

γ3
c̃3

˙̂c3

]

+

[

−σTM−1∆G + σTM−1
U24 +

1

γ4
c̃4

˙̂c4

]

+

[

−σTM−1D + σTM−1
U25 +

1

γ5
c̃5

˙̂c5

]

+σTM−1
U26 (33)

The second right-hand term of (33) is bounded by

σTM−1∆M(Kσσ − ν̇) + σTM−1u21 +
1

γ1
c̃1

˙̂c1

≤
1

λmin

δ1 −
α1

γ1
(ĉ1 −

1

2
c1)

2 +
α1

4γ1
c2
1 (34)

Similarly, the third right-hand term of (33) is bounded by

−σT M−1∆C(σ + ν) + σT M−1u22 + σT M−1u23

+
1

γ2
c̃2

˙̂c2 +
1

γ3
c̃3

˙̂c3

≤
1

λmin

δ2 −
α2

γ2
(ĉ2 −

1

2
c2)

2 +
α2

4γ2
c2
2

+
1

λmin

δ3 −
α3

γ3
(ĉ3 −

1

2
c3)

2 +
α3

4γ3
c2
3 (35)

Similarly, the fourth right-hand term of (33) is bounded

by

σT M−1∆G + σT M−1u24 +
1

γ4
c̃4

˙̂c4

≤
1

λmin

δ4 −
α4

γ4
(ĉ4 −

1

2
c4)

2 +
α4

4γ4
c2
4 (36)

Similarly, the fifth right-hand term of (33) is bounded by

σTM−1D + σTM−1u25 +
1

γ5
c̃5

˙̂c5

≤
1

λmin

δ5 −
α5

γ5
(ĉ5 −

1

2
c5)

2 +
α5

4γ5
c2
5 (37)

Integrating (32) and (33), it is easily to obtain that

V̇ ≤ −

2
∑

i=1

niv−1
∑

j=2

kijs
2
iju

2l
id1 −

2
∑

i=1

kiniv
s2

iniv

−

2
∑

i=1

k0η
2
i + ũT

b Λ − σT Kσσ −

5
∑

ς=1

ας

γς

(ĉς −
1

2
cς)

2

+
1

λmin

5
∑

k=1

δk +

5
∑

ς=1

ας

4γς

c2
ς + σTM−1

U26 (38)

The fourth and ninth right-hand term of (38) is bounded

by

ũT
b Λ + σTM−1

U26 ≤ ‖ũb‖‖Λ‖ −
‖ũb‖‖Λ‖

2‖σ‖2

‖Λ‖‖σ‖2 + δ6

≤ δ6 (39)
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Therefore, we can rewrite (38) as

V̇ ≤ −

2
∑

i=1

niv−1
∑

j=2

kijs
2
iju

2l
id1 −

2
∑

i=1

kinv
s2

iniv

−

2
∑

i=1

k0η
2
i − σT Kσσ −

5
∑

ς=1

ας

γς

(ĉς −
1

2
cς)

2

+
1

λmin

5
∑

k=1

δk + δ6 +

5
∑

ς=1

ας

4γς

c2
ς (40)

Noting Assumption 3.1, we have B = 1
λmin

∑5
k=1 δk +

∑5
ς=1

ας

4γς
c2
ς + δ6 → 0 as t → ∞.

Let A =
∑2

i=1 k0η
2
i +

∑2
i=1 kiniv

s2
iniv

+
∑2

i=1

∑niv−1
j=2 kijs

2
iju

2l
id1 +λmin(Kσ)‖σ‖2 +

∑5
ς=1

ας

γς
(ĉς −

1
2cς)

2, and it is easy to know A > 0.

Integrating both sides of (40) gives V (t) − V (0) ≤
−

∫ t

0
Ads +

∫ t

0
Bds < −

∫ t

0
Ads + C, where C =

∑5
k=1

ak

λmin
+

∑5
ς=1

bς

4γς
c2
ς + a6 is a finite constant from

Assumption 3.1, we have V (t) < V (0)−
∫ t

0
Ads + C. Thus

V is bounded and V (t) is no increasing and V̇ (t) < 0.

Substituting the control (18) into the reduced order dy-

namics (11) yields JT [(Kλ + 1)eλ + KI

∫ t

0
eλdt] = M(σ̇ +

ν̇) + C(ν + σ) + G + d−L(LT L)−1(U1 + U2). Since σ̇, σ,

ν̇, ν, ci, αi, ζ̇, γi, Λ, δi are all bounded, the right hand side

of (III) is bounded, i.e., JT [(Kλ + 1)eλ + KI

∫ t

0
eλdt] =

Γ(σ̇, σ, ν̇, ν, ci, αi, ζ̇, γi,Λ, δi), Γ(∗) ∈ L∞.

Let
∫ t

0
eλdt = Eλ, then Ėλ = eλ. By appropriate choos-

ing Kλ = diag[Kλ,i], Kλ,i > −1 and KI = diag[KI,i],
KI,i > 0 to make Ei(p) = 1

(Kλ,i+1)p+KI,i
, p = d/dt a

strictly proper exponential stable transfer function, it can be

concluded that
∫ t

0
eλdt ∈ L∞, eλ ∈ L∞, and the size of eλ

can be adjusted by choosing the proper gain matrices Kλ

and KI .

Since σ̇, σ, ν̇, ν, ci, αi, ζ̇, γi, Λ, δi, eλ and
∫ t

0
eλdt are

all bounded, it is easy to conclude that τ is bounded.

IV. SIMULATION STUDIES

Consider the two 3-DOF mobile manipulators systems

shown in Fig. 2. The parameters are set as as mp = 5kg,

m1 = 1.0kg, m2 = m3 = 0.5kg, Iw = 1.0kgm2, Ip =
2.5kgm2, I1 = 1.0kgm2, I2 = 0.5kgm2, I3 = 0.5kgm2,

d = l = r = 0.5m, 2l1 = 1.0m, 2l2 = 0.5m, 2l3 = 0.5m.

The mass of the object is mobj = 0.5kg. Let us set the

desired trajectories of the object as rod = [xod, yod, zod]
T ,

xod = 1.7 cos(t), yod = 1.7 sin(t), zod = 2l1. Therefore, we

could obtain the corresponding desired trajectory of mobile

manipulator II as q2d = [x2d, y2d, θ2d, θ21d, θ22d]
T with

xd = 1.0 cos(t), yd = 1.0 sin(t), θd = t, θ21d = π/2rad,

θi2, θi3 are redundant joints to control force and compensate

the task space errors. The end-effector hold tightly on the

top point of surface. The constraint relative motion by the

mobile manipulator I is an arc with the center on the joint

2 of the mobile manipulator I, angle= π/2 − π/6 cos(t),
R = 0.7m and zd

c = 1.0m, and the constraint force is set as

λd
c = 15.0N . Therefore, from the constraint relative motion,

we can obtain the desired trajectory of mobile manipulator

I is q1d = [x1d, y1d, θ1d, θ11d, θ12d]
T with the corresponding

trajectories x1d = 2.4 cos(t), y1d = 4.0 sin(t), θ1d = t,
θ11d = π/2−π/6 cos(t), and θ22, θ23 are used to compensate

the position errors of the mobile platform.

The initial conditions selected for mobile manipulator

I are x1(0) = 2.5m, y1(0) = 0.0m, θ1(0) = 0.0rad,

θ11(0) = 0.5253rad, θ12(0) = −0.9273rad, θ13(0) =
1.8546rad, λ(0) = 0.0N and ẋ1(0) = 0.5m/s, ẏ1(0) =
θ̇1(0) = θ̇11(0) = θ̇12(0) = θ̇13(0) = 0.0, and the initial

conditions selected for mobile manipulator II are x2(0) =
1.2m, y2(0) = 0m, θ2(0) = 0.0rad, θ21(0) = 1.57rad,

θ22(0) = 2.62rad, θ23(0) = 1.05rad, and ẋ2(0) = ẏ2(0) =
θ̇2(0) = θ̇12(0) = θ̇22(0) = θ̇23(0) = 0.0.

In the simulation, the design parameters for each mobile

manipulator are set as k0 = 5.0, k1 = 180.0, k2 = 5.0, k3 =
5.0, η(0) = 0.0, Ka1 = diag[2.0], Kλ = 0.3, KI = 1.5,

Kσ = diag[0.5], Ku = diag[1.0]. The design parameters

in u2 of (19) are γi = 0.1, αi = δi = 1/(1 + t)2, and

ĉi(0) = 1.0. The disturbances on each joint of each mobile

manipulator are set to a time varying form as 0.5 sin(t),
0.5 sin(t), 0.1 sin(t) and 0.1 sin(t), respectively. If using

the control law (18), we can obtain Fig. 3 to describe the

trajectory of the mobile platforms of both mobile manipula-

tors. Fig. 4, Fig. 7, Fig. 5 and Fig. 8 show the trajectory

tracking (ζ − ζd) of the joints with the disturbances for

both mobile manipulators. Fig. 10 shows the contact force

tracking λc − λd
c . Therefore, the validity of the proposed

controls are confirmed by these simulation results.

V. CONCLUSION

In this paper, dynamics and control of two mobile robotic

manipulators manipulating a constrained object have been

investigated. In addition to the motion of the object with

respect to the world coordinates, its relative motion with

respect to the mobile manipulators is also taken into consid-

eration. Robust adaptive controls have been developed which

can guarantee the convergence of positions and boundedness

of the constraint force.
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