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Abstract— We propose a novel entropy-based method for
feature selection in order to reduce the computational burden for
real time simultaneous localization and map building (SLAM)
for mobile robot navigation. Our approach is based on informa-
tion (entropy) theory together with a data association method
to initialize new features into the map, match measurements to
the map features, and remove out-of-date features. The selected
features are optimum in the sense that fusion of measurements
from those features with existing information would yield the
most entropy reduction in estimating the robot location and
the map features’ locations. Our method has the advantage of
selecting a suitable number of features by considering the com-
putational constraint in real time implementations. Simulation
results show that the proposed entropy based feature selection
strategy is effective in dealing with the map scaling problem in
SLAM.

Index Terms— Entropy, Feature Selection, SLAM

I. INTRODUCTION

The problem of SLAM has attracted immense attention
in the mobile robotics literature. The objective of SLAM
is to use the information obtained by sensors mounted on
a vehicle to build and update a map of the environment
and simultaneously compute the vehicle location in that map.
SLAM has been a central research topic in the field of mobile
robotics due to its theoretical challenges and critical impor-
tance for many different types of robot applications [1]. A key
stumbling block in the development and implementation of
new methods for SLAM has been the map scaling problem—
the increase of computational complexity with the size of the
operating environment of the mobile robot.

It is well known that the complexity of SLAM algorithms
can be reduced to ∼ O(N2) [2], where N is the number of
landmarks in the map. If the SLAM period is long, the number
of the landmarks will increase and at last the computer
resources will not be sufficient to update the map in real time.
Real-time performance becomes impossible for environments
with more than a few hundred features. There have been some
approaches towards solving the map scaling problem. Leonard
et al presented a method which splits the map into multiple
globally-referenced submaps, each with its own vehicle track,
and maintains all correlations within a submap [3]. The moti-
vation is to achieve good performance by computing multiple
partial solutions in parallel, and to avoid the computational
burden that is entailed by computing one complete solution.

They also present an approximation technique to address the
update of covariances in the transition between the maps.
However, a heuristic algorithm is needed to propagate the
vehicle estimates between submaps. Although they present
impressive experimental results, there is no proof of the
consistency of the approach or estimation of the conservatism
of the covariance over-bounding strategy. Newman analyzed
the convergence properties of estimation error covariance
matrices in SLAM and develops techniques for the scaling
problem based on the use of relative maps [4]. It can be
shown that the scaling and computational costs vary between
being linear in the number of beacons and the same as the
optimal solution. However, there are two difficulties with this
method. One is that beacon estimates are not expressed in
the same consistent coordinate frame and must be converted
using projection operators [4]. The other problem is that the
map cannot be used to directly update the vehicle. Simon
Julier and Uhlmann introduced a covariance intersection (CI)
for state estimation in SLAM [5]. The computational costs
are constant time and the scaling is linear in the number of
beacons [6]. However, SLAM implemented with CI may not
provide an effective solution because the error bounds can be
too conservative. Guivant and Nebot presented a compressed
filter to store and maintain all the information gathered in a
local area with a cost proportional to the square of the number
of the landmarks in this area [1]. They have shown methods
to reduce the number of times that the full ∼ O(N2) update
must be performed.

In this paper, we present an entropy based feature selection
strategy to reduce the computational cost during SLAM.
Practically, information methods provide a natural way of
mixing measures of continuous information gain with discrete
information gain. By using entropy information, we get that
the next selection step is performed so as to maximize the
robot’s information about its location and all features’ loca-
tions in the map. The algorithm can select available computa-
tionally resourceful features. Feature selection is formulated
as an optimization problem that maximizes the amount of the
information acquired. The information gained by observing an
environmental feature must counteract the rise in uncertainty
that results from the motion of the vehicle.

The paper is organized as follows. Section 2 is devoted
to the entropy-based feature selection formulation of SLAM.
Section 3 presents a method to solve the formulated problem



and demonstrates how to combine it with the data association
in SLAM so as to obtain a real-time SLAM solution. Section 4
shows simulation and experimental results. Some conclusions
are drawn in Section 5.

II. ENTROPY-BASED FEATURE SELECTION FOR SLAM

A. Stochastic Mapping

We firstly review the theory of stochastic mapping by using
standard Bayesian estimation theory. It is simply a special
way of organizing the states in an Extended Kalman Filter
(EKF) for the purpose of feature based SLAM. Assume that
the kinematic model of the vehicle is as follows:

xv(k + 1) = fv(xv(k), u(k)) + vv(k) (1)

where

xv(k + 1) =


xv(k + 1)

yv(k + 1)
θv(k + 1)




with xv and yv being the coordinates of the vehicle and θv the
heading angle. fv defines the kinematic model of the vehicle
with u(k) being the vector of control inputs. vv(k) is a white
noise with zero mean and covariance Qv .

The location of the ith landmark is denoted as pi. The state
equation for the ith landmark is

pi(k + 1) = pi(k), i = 1, 2, · · · , N
since landmarks are assumed stationary, where the number
of landmarks in the environment is assumed to be N . The
augmented state equation containing both the state of the
vehicle and the states of all landmarks is denoted

x(k + 1) = f(x(k), u(k)) + v(k) (2)

where

f(x(k), u(k)) =




fv(xv(k), u(k))
p1(k)

...
pN (k)




and
v(k) = [ vT

v (k) 0 · · · 0 ]T

The vehicle is equipped with a sensor that can obtain obser-
vations of the relative location of landmarks with respect to
the vehicle. The observation model for the ith landmark is
written in the form

zi(k) = Hi(x(k), pi(k)) + wi(k) (3)

where wi(k) is a white noise with zero mean and variance σr.
The output function Hi(·, ·) relates the output of the sensor
to the state vector when observing the ith landmark. The a
posteriori PDF of xk+1, given a set of measurements Zk+1 =
{zk+1, · · · , z1}, can be found by the Bayes Rule as:

p(xk+1 | Zk+1) =
p(zk+1 | xk+1)p(xk+1 | Zk)

p(zk+1 | Zk)
. (4)

The distribution p(zk+1 | xk+1) is defined as the likelihood
function by the Likelihood Principle. By knowing p(xk+1 |

Zk+1), we can form an estimate x̂k+1 of the state. An EKF is
an approximation of Bayesian formula. It is a computationaly
efficient estimator for the states of a given nonlinear dynamic
system and it assumes that the noise processes are well mod-
elled by Gaussian noise and that the errors due to linearization
of the nonlinear system are small. That is, the EKF for a
system provides an estimate of both the state of the system
x̂ as well as an estimate of the covariance of the estimated
state P. The covariance of the estimated state provides an
estimate of the confidence in the estimate x̂. The estimation
error covariance P of the system takes the form of:

Pk|k =




Prr Pr1 · · · PrN

P1r P11 · · · P1N
...

...
. . .

...
PNr PN1 · · · PNN




k|k

. (5)

The sub-matrices Prr, Pri and Pii are the vehicle to
vehicle, vehicle to feature, and feature to feature covariances,
respectively. This form is significant as it allows us to separate
the uncertainty associated with the robot as well as each
individual feature. This separation will be used in obtaining
a measure of the information in our system. Thus, the robot
and the map are represented by a single state vector, x, with
an associated estimation error covariance P at each time step.
As new features are added, x and P increase in size.

B. Problem Formulation

In this section, we model the entropy-based feature selec-
tion starting with standard Bayesian estimation theory. For
simplicity, we rewrite (4) in another form:

p(x | z) =
p(z | x)p(x)

p(z)
. (6)

The system state x is the parameter to be estimated. The
probability that the robot and the features have a pose x is
given by p(x). In Equation (6), p(x | z) is computed from
sensor model and the robot’s map of the environment. It may
depend on two factors. The first is the noise corruption to the
signal observed by the sensor. The second is the estimated
system state x. It includes the robot’s location and features’
locations estimated at each time step. These two factors bring
the uncertainty to the sensor model.

Let Z be all measurements that have already been used in
the inference of the current belief p(x | Z) of the robot and
features’ locations. Let zi be the observation of an additional
feature that hasn’t been used so far, that is, zi does not belong
to Z. The fusion of the additional feature zi and the current
system state belief p(x | Z) yields the next system state belief
p(x | zi, Z) as:

p(x | zi, Z) = Cp(zi | x, Z)p(x | Z) (7)

where C is a normalization constant. We assume that Z and
zi are independent conditioned on x, that is, p(zi | x, Z) =
p(zi | x), then Equation (7) becomes:



p(x | zi, Z) = Cp(zi | x)p(x | Z). (8)

According to information theory [7], the uncertainty of an
arbitrary continuous distribution p(x) can be described by its
entropy:

H(px) = −
∫

p(x) log(p(x))dx. (9)

This measure can be considered as the “purity” of the
probability distribution. If the distribution is highly focused
at a single pose x, then the entropy will be low. If the
distribution is spread over a wide space, the entropy will be
high. According to Equation (9), the effect that a particular
set of sensing data has on the robot’s and features’ belief in
their positions can be measured in this way.

H(px|Z) = −
∫

p(x | Z) log(p(x | Z))dx. (10)

Combining Equation (6) and Equation (10), we give the
entropy of the posterior distribution after obtaining the mea-
surements:

H(px|Z) = −
∫

p(z | x)p(x)
p(z)

log(
p(z | x)p(x)

p(z)
)dx. (11)

This equation gives the entropy of the posterior distribution
before additional features are added. Recall that p(x) is the
prior position distribution and p(z | x) is the probability of the
sensor measurement conditioned on the position, computed
from the sensor model and the environmental map.

If we use an additional feature to update the system state,
the uncertainty of the next system state p(x | zi, Z) is a
function of both Z and the additional feature measurement
zi, and can be described by the entropy H(px|zi,Z) as:

H(px|zi,Z) = −
∫

p(x | zi, Z) log(p(x | zi, Z))dx. (12)

We want to find the additional features that can give more
information gain if they are indeed fused with the existing
features’ and robot’s pose distribution.

i = arg max
i∈I

(H(px|Z) − H(px|zi,Z)).

where I is the information of the new features.

III. ENTROPY BASED FEATURE SELECTION STRATEGY

The essence of our model in the last section is to determine
which features should be selected to update the system state
in SLAM so that they maximize the total knowledge (i.e., the
information) about the system in the presence of measurement
and navigational uncertainty. By choosing features, we mean
that some “good” features are chosen so as to maximize the
information gain about the robot’s location and the locations
of all the features (the map). The proposed approach for the
selection of a particular landmark is based on localization and
mapping information offered by a particular landmark from
a given time step. It takes into account the uncertainty in
the vehicle pose estimate and the existing features’ positions

in the map while computing the information content of the
landmark.

The concept of entropy is employed to facilitate landmark
augmentation. As stated in the last section, the entropy is min-
imum when the information is maximum. It is conventional
to seek minimal entropy when actually maximum information
is sought. A mathematical expression for the entropy of a
Gaussian distribution is to be used in the following. For an n
dimensional state vector xk+1 conditioned on an observation
vector Zk+1, the posterior entropy can be obtained as:

Hk+1|k+1 = E{− ln p (xk+1 | Zk+1)}. (13)

For a Gaussian distributed system state, we can calculate
that the value of the above equation [7] as

Hk+1|k+1 = 0.5 ln[(2πe)n | Pk+1|k+1 |]. (14)

Therefore, for a Gaussian distribution vector all that is
required to compute its entropy is the dimension n and
covariance P. The posterior and prior information metrics can
then be defined as

imk+1|k+1 = −Hk+1|k+1 = −0.5 ln[(2πe)n | Pk+1|k+1 |],
(15)

imk+1|k = −0.5 ln[(2πe)n | Pk+1|k |]. (16)

Thus, we can calculate the information difference as fol-
lows:

�i = imk+1|k+1 − imk+1|k. (17)

In our application, we can get Equation (18) below according
to the above formula. When observations are recorded at some
time step, we will perform the following actions to select
the useful features which can provide us more information
for the vehicle’s pose and map features’ positions. We firstly
calculate the individual update covariance Pk+1,i|k+1,i. This
means we use only one feature at time step k+1 to update the
system to get a covariance Pk+1,i|k+1,i. The same action is
performed to all observations at the same time step. Thus, we
obtain the possible contribution for localization and mapping
for each observation.

imk+1|k+1,i = 0.5 ln[(2πe)n | Pk+1,i|k+1,i |] (18)

Then we will calculate the information difference for each
feature in the map at time step k+1 as follows:

�i = imk+1|k+1,i − imk+1|k (19)

Those features that have large values of �i will be selected.
In the entropy calculation, in order to avoid errors if the
covariance tend to infinity in some cases, we can use another
suitable information-based cost function proposed in [8].



C(P ) = π ·
∏
j

√
λj(Pvv) + π ·

nf∑
i=1

∏
j

√
λj(Pii)(20)

(21)

= π ·
√

det(Pvv) + π ·
nf∑
i=1

√
det(Pii) (22)

where λj(·) is the jth eigenvalue of Pvv or Pii and nf is the
number of features.

Now we focus on the map management problem. As
we know, once features have been detected, they must be
matched against known landmarks in the environment. Data
association is firstly performed between the observed features
and the features currently in the map. This step is one of
the most crucial steps in the mapping process. When data is
received from a sensor there is a possibility that it may in fact
be a spurious measurement. Some spurious measurements can
be eliminated by the development of appropriate feature ex-
traction approaches [2]. Regardless of the care that is taken in
designing the feature extractor, some spurious measurements
may still be passed to the localization and mapping algorithm
and it is important to have a mechanism for rejecting these.
Here we adopt the strategy as in [9]. But the NN data
association is replaced by a more effective matching algorithm
in [10] in order to reduce incorrect matchings. Tentative
features that are not reobserved are removed from the list after
a fixed time interval has elapsed. In detail, the data association
and map management can be summarized as follows:

• Matching: The features and the observations are matched
by the IHGR method proposed in [10], and measure-
ments that have not been matched are stored.

• Feature selection: Select features according to their en-
tropy values. The number of selected features can be
decided by an appropriate compromise between quality
estimation of vehicle pose and available computational
memory.

• Updating the system state: Update the vehicle and fea-
tures’ positions with the selected features with the EKF.

• Initializing new features: New features which are not
matched with the features stored in the map by the IHGR
algorithm are initialized.

• Removing old features: Out-of-date features are deleted.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

The first test environment is established by randomly gener-
ating some features and assuming that the vehicle’s trajectory
is a circle whose radius is 62 meters. The robot moves at
a constant speed and the heading angle changes 1 degree
at each sampling instant. The environment has 160 features
which are randomly distributed in a region of 150 meters by
150 meters. When the vehicle moves, some of the features are
observed. We assume that the features’ positions are unknown

Fig. 1. The mapping and vehicle path when using entropy based feature
selection in the SLAM process.

Fig. 2. The vehicle’s position errors (between the ground truth (GPS reading)
and the estimated position) comparison in the global coordinate between the
entropy based feature selection in the SLAM process and full SLAM.

Fig. 3. The range innovation and its 2σ confidence bounds during the
SLAM process with IHGR data association.



10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
observation angle innovation and confident bounds

Time(secs)

A
n

g
le

 i
n

n
o

v
a

ti
o

n
s
(m

)

Angle Innovations
95% confident bounds

Fig. 4. The angle innovation and its 2σ confidence bounds during the
SLAM process with IHGR data association.

which is the case in SLAM and match the features with the
observations by using the IHGR algorithms [10] [11].

By applying the entropy based feature selection scheme
proposed in the previous section, we implemented SLAM and
the results are shown in Figure 1. Here, the features’ number
is selected as 10 after a fixed time interval (20 laser scans). It
shows the SLAM results that include the vehicle’s estimated
trajectory and the features’ position. The circles correspond
to the features existing in the full SLAM implementation and
the stars mean the features selected during the efficient SLAM
process by using the entropy based feature selection scheme
presented here. In fact, the vehicle’s true path is almost
overlapped with the estimated one during the SLAM process.
We also show the global error between the estimated vehicle
position and the ground truth which can be seen in Figure
2. In Figure 2, we can see that the comparison between the
proposed SLAM global error and the full SLAM global error
when we use all the obtained features without the proposed
feature selection scheme. From the figure, we can see that the
feature selection algorithm gives good results compared to the
full (using all features) SLAM and with a lower computational
cost. In full SLAM, the whole SLAM process where the
vehicle travelled several hundred meters took 91.5482 seconds
while the proposed algorithm took 80.7560 seconds on the
same computer (the algorithms were run on a Pentium IV
PC, 1.7GHz).

B. Experimental Results

In this subsection, a practical implementation of the pro-
posed entropy-based feature selection scheme in an outdoor
environment in Nanyang Technological University is pre-
sented. The testing site is a road around Canteen 3 and
Hall 7 at Nanyang Technological University. Many trees and
pillars exist on both sides of the road. Figure 5 shows the
beginning part of the experimental environment. The vehicle
is equipped with a GPS, a laser sensor and wheel encoders. A
kinematic GPS system of 2 cm accuracy is used to evaluate

the ground truth. Thus, the true navigation map is available
for comparison purposes. Wheel encoders give an odometric
measurement of the vehicle location. The dead reckoning
sensors and laser range sensor are combined together to
predict the vehicle’s trajectory using the extended Kalman
filter and to build the map at the same time. In this experiment,
the features used are natural landmarks (mainly trees and
pillars on the road) that are extracted by applying the feature
detection algorithm in [12]. Feature detection was done by
using a curve gradient model for data segmentation and a
Gauss-Newton optimization method to obtain the most likely
centers of tree trunks.

Figure 6 shows the real map of the experimental en-
vironment where the mobile robot travelled. The road is
hundreds of meters long. Figure 7 shows the comparison of
the estimated trajectory of the vehicle and the true path. It also
shows the features extracted from the raw laser sensor data
which is represented by the circles and the selected features
which are applied for the SLAM update, and are marked by
stars. Figures 8 and 9 give the validated range and bearing
innovation sequences along with the 3σ bounds. It is evident
that the innovations of range and bearing are well within the
bounds which shows that the estimate is consistent.

Fig. 5. Part of the experimental site (we started from this point).

Fig. 6. The real map of the vehicle trajectory at Nanyang Technological
University.



Fig. 7. The experimental results. the figure shows the vehicle’s estimation
path, the features extracted (circles) and the selected features (stars) by using
the entropy based feature selection algorithm during the SLAM process.

Fig. 8. The range innovation and its 3σ confidence bounds during the
SLAM process with the entropy based SLAM.

Fig. 9. The observation angle innovation and its 3σ confidence bounds
during the SLAM process with the entropy based SLAM.

V. CONCLUSIONS

This paper considered the problem of selecting features
for feature-based SLAM with autonomous outdoor vehicles.
A novel feature selection strategy was incorporated within a
stochastic mapping algorithm and tested via simulations and
real data in an outdoor environment. We introduced a method
for performing SLAM in a priori unknown environments with
large number of features. The method is based on choosing
features that, given the current knowledge, would maximize
the information gain in the estimation of the vehicle’s pose
and the features’ position. We can select the number of
features to update the SLAM state according to the avail-
ability of computational memory. This approach can easily
be implemented as an extra step in a stochastic mapping
algorithm for SLAM. The validity and usefulness of the
approach has been verified by simulations and experiments.
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