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Abstract— Vehicle following can be achieved by minimizing addressed properly.

the relative information (Kullback-Leibler or K-L distance), On the other hand, information theoretic frameworks have
between the estimated poses of leader and follower vehicles yoan ysed extensively in mobile robotics applications. Typ-
by formulating the vehicle following system as an optimization . L . .

problem. The aim is to search for an optimal control action |cal_appllc_at|ons are surveillance _Systems us_lng Unmanned
for the follower vehicle in the admissible control command Aerial Vehicles (UAVs) [11] and active exploration of an area

space. Relative information is used as a metric in the search using Unmanned Ground Vehicles (UGVSs) [12]. These sys-
space and for evaluating the expected performance of vehicle tems aim to maximize the knowledge, or information, gained
following. With this metric, and based on the assumption that by the robot, through optimized control actions [13][14][15].

both vehicle pose (position and orientation) distributions are The strat | . t minimizing th tainti f
Gaussian functions, the K-L distance of the vehicle following € stralegy also ams al minimizing the uncertainties o

system can be computed. With a series of admissible actions, the system state through the selection of a sequence of
such as steering and velocity commands, for the follower control actions. Moreover, information theoretic frameworks
vehicle at each pose prediction step, and by minimizing the have been used in the machine vision community as a tool
K-L distance, an optimized action for the follower vehicle j, jnage association. For example, the K-L distance was
can be obtained. The proposed vehicle following algorithm . .
has been tested and the performance of the follower vehicle used as a measure for optimal fe_)at_u_re selection S_UCh that
when the leader undergoes various kinds of maneuvers has the feature was selected by maximizing the K-L distance
been analyzed. Results using this new method, as compared to between target classes [16].
classical methods, have shown the advantages of this method.  |n anticipation of the above challenges in urban environ-
ments and the advantages of information theoretic frame-
works in minimising system state uncertainties, this paper
For autonomous vehicle following, both longitudinal andfocuses on the generation of control commands for a follower
lateral controllers [1][2] are widely implemented. Longi-vehicle to pursue a leader vehicle. This is achieved by taking
tudinal controllers regulate the desired spacing and timato consideration the kinematic constraints of the vehicle
headway between the two vehicles. On the other hand, lateeaid the uncertainty in the measurement data obtained by
controllers are commonly implemented as a lane followinghe follower vehicle. The control commands to the follower
system. These two control strategies have been successfulghicle are computed based on the minimization of the
demonstrated on roads with large radii of curvature, such aslative information (K-L distance) between the two vehicles.
motorways [1][2]. However, for vehicle following in urban By formulating the vehicle following system as a Bayesian
environments [3][4], the radius of curvature can be signifirepresentation, we obtain two probabilistic distributions de-
cantly lower, and the performance of these two controllerscribing the uncertainties of the states of the leader and the
may be degraded. Vehicle following in urban environmentfollower vehicles. Before issuing an action to the follower
requires the follower vehicle to trail thzajectory of the vehicle, a series of achievable actions is identified. This series
leader for safety purposes to avoid the cutting of corners iof achievable actions acts as the input to the pose estimation
low radius of curvature areas. filter of the follower vehicle. Then a set of predictions of
In the vehicle following function proposed by Ng et. alpose uncertainty for the follower vehicle, based on this series
[5], the pose states of both the follower and leader vehiclesf actions, can be obtained. The relative information can be
can be obtained through an estimation process. Alternativelgpmputed based on this series of expected pose uncertainties
vehicle states, such as the dynamics and pose of the leadath respect to the uncertainty of the state of the leader
vehicles, can be transmitted to the follower vehicle viaehicle. An optimized action for the follower vehicle can
inter-vehicle communication systems [1][2][6]. Other vehiclébe selected from the actions that yield minimum relative
following systems instead use on board sensors, such as lasdormation for the system.
scanners [7][8][9] and cameras [10], as the main perception The intended application is for vehicle following in urban
tools. However, real sensors introduce noise into the vehicvironments. As the cost/performance ratio of the electronic
following system. The sensor data uncertainty may affectomponents and sensors has significantly reduced in recent
the reliability of the vehicle following system if it is not years, the implementation of this system is now feasible.

I. INTRODUCTION



Il. VEHICLE FOLLOWING SYSTEM: PROBLEM fL
FORMULATION v

Leader
The vehicle following function can be defined in an

analytical manner as follows: v, L ______ [~or

Definition I Conventionally, vehicle following is achieved L
when the follower vehicle attains the pose of the leader [
vehicle some instant of time later, that is, I

xp(t) = x(t —m), m>0 Vit>0 1) i: — =

Follower

wheret is the time andn is some time elapsed for a follower
vehicle to reach the position of, and align with, the leader.. ) o ) ) o
g. 1. Virtual trailer link model for vehicle following. At any time instance,

: i
Xr (t) andx(t) ajre the poses of follower and leader Veh'CIegwe follower vehicle perceives the pose of the leader with an on board sensor.
at timet respectively. The pose,T, (zr,yr) of the virtual trailer link is then computed. The

For safe vehicle following, the following criteria must befollower vehicle will be commanded to the new positidhi, The whole
fulfilled: process will be repeated at the next time instant.

| xp(t) = x0.(8) [|> dum @) -

whered,, > 0 is defined as a minimum safety separation X5, (kt1) = £ (XL ks X7k, Up, wi) (5)

distance between the two vehicles at any time.
Furthermore, the velocities and steering angles of th

leader and follower vehicles at all times are constrained a

hereXr, X1 1 andXy, are the histories of the state of
e follower vehicle, leader and virtual trailer respectively.
Uy, is a vector of motion control signals input to the follower
vehicle, w, is the motion uncertainty anfl(---) is a non-

0 < v <V . . . ;
_ r - fmaz linear function representing the motion of the follower.
~OLmae S OL < OLmax The sensor is used to acquire the noisy observatjoof
0 < v < VFma (3) the leader vehicle taken from the follower. The sensor model
—QFmaz < ¢F < AFmaz is described as:
z, = h(Xp g, XP ks Vi) (6)

where Vimaz, VEmazs @Lmaz aNd apmae,: € RT are the
maximum achievable velocities and steering angles of thghere 1, is the sensor noise anH(---) is a non-linear
leader (indicated as subscript L) and follower (indicated aginction representing the sensor model.

subscript F) respectively. _ _ Both the sensor and motion uncertainties will be modelled
However, as presented in our earlier work [17], it wasis random variables. The sequendes,vi,...,v.} and
demonstrated that vehicle following can be achieved by, w,...,w;} are assumed independent, zero mean, white

implementing a virtual trailer link model. In that model, theprocesses with known covariances.

leader vehicle is r_nodelled as the towing vehicle and the As formulated in [5], a complete vehicle following system
follower as the trailer. As the model suggested, the leadean be formulated as a probability density function (pdf):
vehicle (towing) is effectively pulling a follower vehicle

(trailer) via a virtual trailer link. Also, it has been proven P(xF x, XL,k |Uxk, Zx)
that the length of the virtual trailer link must equal the length x P(z}|xp k)P (xrx|Ux, Z} )
of the follower vehicle itself for an intrinsically safe vehicle

following system (figure 1) [17]. If a chain of vehicles is to localization of follower
follow a leader, vehicles further down the chain suffer from x P(zg|xF k, XL k)P (XL k| Zyn_1)

a phenomenon known as string stability [2]. This issue can
be addressed using this virtual trailer link model [17].

Definition 2 With the virtual trailer link model [17], \yhere 70 and z¢ are the current observations made by

Tracking of leader vehicle w.r.t follower (7

vehicle following is redefined as: the proprioceptive and exteroceptive sensors onboard the
follower. In vehicle following, the follower can predict its
[xp(t+0t) —xp(t)[| =0 V>0 (4) pose iteratively with the on-board sensors. Also, the follower

wherex(t) is the pose of the virtual trailer at timeand 1The lowercase notation, eg;, . denotes the current state and the

ot is the time increment between measurement. uppercase notation, €§r, ;, denotes the entire history of the state up to
With ref fi 1 th . del in di and including timek. The state in discrete time space is represented by
ith reference to figure 1, the motion model, in IScre't%ubscriptk, egxy, k. For continuous time space, it is denoted in the form

time state space, of the follower vehicle can be representetixy, (t).



can make observations of the leader and predict the relative relative to the follower. However, at any given tinke
pose of the leader. The advantage in representing the vehicle in practice, the pose of the follower may not allow it to
following system under a Bayesian framework is that the attain the pose of the virtual trailer, due to the violation
uncertainties in the system and sensor models are considered of the kinematic constraints.
in the formulation. To minimize the effects of sensor uncertainty and vehicle
With the Bayesian framework as shown in equation (7kinematic constraints, the concept of relative information
the history of observations and control signals are recordesl used to determine the control actions for the follower.
and the poses of both vehicles are estimated. By collatinghis is made possible by equation (7). Two probabilistic
this information into an information vectol, distributions, representing the uncertainty of the poses of the
®) vehicles, can be obtained in the recursive estimation process
and then be used in the computation of relative information.
The control (heading and speed) commands for the fohelative Information
lower, are the input to the vehicle following system. How-
ever, because of the vehicle’s kinematic constraints, thereAs the relative information formulation will be used in
are limits to the steering and heading commands which atis paper, a summary of the concept is included here.
achievable. Relative information (K-L distance) [18] is a metric that
Definition 3 The admissible control signals at timeare ~quantifies the "goodness of fit” or "closeness” of two prob-

the collection of all available control signals,.. Therefore, ability density functions.
For the case of two Gaussian distributions [19], [20],
Ak‘ = {aO(Ik)7al(Ik)7"-aaN—l(Ik')} (9)

1, |Zp 1 .
wherea; is defined as a function df, at timek and N is H(Q|IP) = §1og Zol + §TT{ZP (3q —2Xp)}
the total number of admissible control signals. 1 Tt
From definitions 2and 3 and the constraints of equation +5(kQ —np) Bp (pg —pup)  (11)

(3), it is possible to define the problem of vehicle following here (i, £p) and (uq, So) are the mean and covariance

as fmdmg an op.t|m|z.eq.control action from the a(.j.rn'ss.'bl?‘natrix pairs for Gaussian distributioddand @ respectively.
control signals (indefinition 3 such that the condition in The first term on the right hand side, of equation (11)

def!nmor_] 2(e_q_u_at|on 4)) 'S fuffilled under the Cons’tramts’represents the information gained, the second term represents
deﬁ_ned |ndef|_n|t|on 1(equat|9n (3)). .Hence, the problem Ofmutual information and the last term is actually the Maha-
vehicle following can be defined as: lanobis distance of the two pdfs. From equation (11), if the

aj,, = argmin ||5<F7(k+1) — %71 (10) covariance matrices of the two distributions to be compared

Ak are of the same magnitude, the K-L distance is exactly the

wherea; , is the optimized control action for the follower. same as the measure of the Manalanobis distance. Whereas,
Equation (10) can be viewed as an optimization problenin the case of the two distributions having the same mean
The aim is to search for an optimized control signal, that igalues, the K-L distance measures the information gained and
to be input to the controller of the follower, in the admissibleghe mutual information. Hence, the K-L distance formulation
command space. A metric (or objective function) can beompares both the mean values and covariance matrices of
formulated for this purpose. the two distributions under consideration.

I = {xFr XL ks Zi, Up—1}

A. Information Theoretic Vehicle Following I1l. GENERALIZED INFORMATION THEORETICVEHICLE

For our vehicle following, it has been shown that it is FOLLOWING IN A FINITE TIME WINDOW

possible to estimate the poses of both the leader, hence thdén general, the vehicle following algorithm can be formu-
pose of the virtual trailer, and follower vehicles using thdated in a finite time horizorik, k 4+ M], wherek is the
onboard sensors as in equation (7). However, two main issueigrent time step and/ is the finite time window size in
need to be considered: the time horizon.
« Sensor uncertainty, which affects the performance of Suppo_se that the follower is controlled by a set of actions
the vehicle following system. The uncertainty in the?t €ach time step denoted by
pose estimates of 'Fhe leader vehicle and the virtual U = {Wi) Hicon 2,01 (12)
trailer must be considered by the follower when deter-
mining its next control action. Furthermore, the possibl&vhereu,. ;) is the vector of actions specifying the control
consequences of sensor uncertainty, which might causemmand issued to the follower at tinket .
vehicle following operation failure, has to be considered At every time step, the follower makes observations about
during implementation. the leader vehicle. The observation is denoted as
« Vehicle Constraints Typically, a command is sent
to the follower so tha}c/F;t ca)r/1 maneuver towards the Z = {zksibii=012..m (13)
pose of the virtual trailer at timé&. This is based on Let Az and N+ denote the normal distribution functions
the estimations of the leader and virtual trailer poseepresenting the mean poses and covariance matrices of the



follower and virtual trailer respectively for all time steps- /

[k, k + M) defined in the time horizon.

NT = {NT,j}|j=k,k+1,, ..... e+ M (14)

Np = {NF,j}U:k,kH, ..... JK+M (15)

The termsy - ; and n ¢ ; denote the distribution functions
computed at time step.

Let the admissible control command, at time stepgfor
the follower be denoted as

A ={an}in=01,2,...N-1 (16)

wherea,, is the control command to be input to the follower
and N is the total number of admissible commands availabl
for the follower.
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The information theoretic vehicle following problem cangig. 2. control block diagram for the proposed vehicle following system.

now be formulated as follows:

TABLE |
*
A (k+1) = ALGORITHM FOR VEHICLE FOLLOWING FUNCTION
argmin{C(H;(n rj+1lI8NT,5) }i= k1, oy (A7) Steph Actions Formulation
A 1 Current Pose estimates X k| XT,k |k
subject to the constraints 2 | Predict follower pose from Xp i1k
achievable actions
3 Compute KL distance H; Vj =[1, M]

Xp, X X _ J J
Bk X(k41); oo X N -1), 4 Choose input and move followef a*(k + 1)
U, Up1)s ooy Wk N—1)) < 8ih (18) 5 Observe pose of leader z(k+ 1)

) ] ] ) 6 Estimate new poses R k41|t 1 RT k4 1]kt 1
where((.) is the composite scalar function representing the7 Loop steps 1 10 6 -

K-L distance,H;(.) is the K-L distance computed at tinye
Xk IS the augmented state vector of both the virtual trailer and

follower, g(.) is the nonlinear constraint vector function and « Virtual Trailer Module (VTM) : This module receives

g1 IS the constraint threshold vector. The constraints include
the maximum allowable steering angle of the vehicle, safe
following distance and the allowable following speed.

Equation (17) provides an unique decision-theoretic solu- «

tion to the vehicle following problem. In general, a control
command, such as velocity or steering angle, for the follower
can be generated by analyzing the relative information be-
tween the two vehicles over a certain time horizon. However,
optimization of equation (17) involves complex computation,
which involves multiple iterations. The iteration scales in the
order of O(N**1). Hence, for implementation, the look-

the estimated poses of the leader and follower from
PEM and generates the estimated pose of the virtual
trailer.

K-L Module (KLM) : The greedy method presented in
[12] is implemented to determine the control actions
for the vehicle following function. A series of possible
steering commands are used as input to compute the
predicted poses of the follower and virtual trailer at the
next time step. The K-L distances are then computed
and the control action resulting from the minimum K-L
distance is then selected.

ahead time horizon for optimization is limited to one timeThe entire algorithm is summarized in table I.

step, which is also known as the greedy method [12].

A. Experimental Setup
Figure 2 shows the simplified block diagram for our The proposed method was validated using simulations. To

. . ) . ake the simulation results comparable to an actual system,
vehicle following function. There are 4 major modules an o ; )
. - : ) he standard deviation settings for the simulated sensors were
each of the functionalities are described as follow:

) o set as close to real known values as possiliter simulation
« Perception Module (PM): The follower vehicle is as- 5 ose, the desired forward velocity and heading angle of
sumed to have on board sensors. In our implementatiofhe |eader vehicle were generated at regular intervals based
the odometry data and the information from a gyroscopgy, the desired leader vehicle’s trajectory. The leader vehicle

were used to localize the follower. The pose of thgyas modelled as a line and a line fitting algorithm was
leader vehicle can be detected using a laser scanner,

camera or fusion of both images. 2In this simulation, KVH DSP-5000 fiber Optic Gyro from KVH
o Pose Estimation Module (PEM) With the observation Industrial, Inc (WWWthCOm) and and SICK LMS290 laser scanner
. (www.sickusa.com) are simulated. The standard deviations (as obtained
received fromPM, both the poses of the leader and;

follower can be obtained using equation (7).

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

rom the respective data sheets) of the gyroscope, laser range and laser
bearing measurements were seflt®8°, 5cm and0.5° respectively.
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implemented for vehicle detection using range scanner [5]. sk ‘ ‘ " Move Straight f ‘ 1
Detailed implementation issues of leader vehicle detection, Zis |
such as its false or failed detection, have been presented in 16} ‘ ‘ ‘ ‘ ‘ ‘ ‘ ]

our earlier publication [5]. Nevertheless, acameracanalsobe 2 ™ ™1 = 0 S s &

used for vehicle detection [4][10]. However, vision related is- . TumieR
sues would need to be solved before reliable implementation <%
can be achieved, and is beyond the scope of this paper. The  =zst ‘ ‘ ‘ ‘

. . -20 -15 -10 -5 0 5 10 1‘5 éO

leader vehicle was controlled by a standalone program during ‘ ‘ ‘ .
. . . 24r Turn Right
the simulation. Its position was recorded as ground truth. The  _ 22}
follower was controlled by the K-L algorithm embedded in == ]
another prograﬁl o . . -20 5 -10 5 0 5 10 15 20
To test the feasibility of the new vehicle following theory, Steering Angles

a S-Curve tra;ectory for. the leader vehicle .IS genera.te%ig. 4. Plot of K-L distance when the vehicles are moving in a straight
The purpose is to test if the proposed vehicle followingne (top), tum left (middie), turn right (bottom).
method can cope with sharp curves turning in both directions,
i.e, sharp left and right turns. The trajectory represents 04
constraints found in typical urban road environments and
attempts to challenge the controller’'s response.

Path Deviation

B. Performance Analysis
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20 \\\ 800 \ Fig. 5. Path deviation and corresponding KL distance.
zoomed view (b) ;
25 N
e T L ‘ ‘ ‘ ‘ . .
) T o maneuvers. Furthermore, from f|gur.e 5, the treqd in the path
X (m) deviation plot resembles the trend in the K-L distance plot.

Fig. 3. The ground truth of both the leader and follower vehicle trajectorie FOI’ example, this can be partICUIarly o_bserved from the flgure
Zoomed views (a) and (b) show the detailed trajectories of the vehiclessQ?tWeen time steps 400 to 800 (which corresponds to the
various time steps. location marked 'A’ in figure 3). From time steps 400 to 580
(zoomed view (a) in figure 3), the leader is making a gradual
As shown in figure 3, the leader vehicle is commanded tleft turn. As the turn rate is gradual, the orientation difference
manoeuvre in a straight path for a short period of time, thepetween the two vehicles will eventually decrease, while the
to make a series of left and right turns. inter-vehicle separation distance between the two vehicles
Figure 4 shows the KL distances computed based on thgll remain constant. Therefore, the KL distance decreased.
estimated poses and equation (17) when the leader vehigleom time steps 580 to 630 (zoomed view (a) in figure 3),
is moving straight (top figure), making a left turn (middlethe leader vehicle is making a sharp right turn. As the turn
figure) and making a right turn (bottom figure). For ourbecomes sharp, the orientation difference between the vehicle
experiment, the total number of admissible steering anglegill be large and hence the K-L distance increased. From
N = 40, with the angular resolution dfdegree. As observed time steps 630 to 800 (zoomed view (b) in figure 3), the
in figure 4, the minimum K-L distance can be obtained, antkader vehicle is making gradual left turn. Similarly, the K-
hence the optimized steering angle, can be chosen. L distance decreased gradually. The above scenarios have
Figure 5 shows the path deviation between the vehiclegrified that the K-L distance can be used as a metric for
and the corresponding KL distances. The path deviation wasaluating the performance of the vehicle following function.
computed off-line based on the closest positions of the two Figure 6 shows the steering angles computed from the
vehicles. The small path deviation as shown in figure -1 metric using a pure pursuit algorithm [21]. It can be
has suggested that the information theoretic based vehi@gserved from the figure that the pure pursuit algorithm has
following algorithm presented is robust to various kinds otomputed the steering angles to be greater tiadegrees,
N . , o when the leader vehicle is making sharp turns. These angles
Details of the system setup can be found in our earlier publication [5

The maximum speed of the leader vehicle is set at 2m/s, simulating slcb)av_e exceeded the ma-.xl|mum allowable_ angle for a typical
speed vehicle following in urban environments. vehicle. Also, the transition of the steering angles from the



0. Vehicle Steering Angles estimation of the poses of both vehicles are considered and
; taken into account as part of the vehicle following function.
200 - g - The inter-vehicle distance is maintained as desired and thus

: i . . it is possible to warrant that the follower is in a position to
stop safely in case of emergencies.

An extension of our approach is to use a priori informa-
tion, by predicting the future trajectory of the leader vehicle.
This is possible if the curvature information of the road that
lies ahead is made available. This information has already
been made available in standard car navigation systems and
can be incorporated as an additional observation which could
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tim&%eps complement our information theoretic framework.
Fig. 6. Plot of optimized steering angles computed from K-L distance REFERENCES
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