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Abstract— Vehicle following can be achieved by minimizing
the relative information (Kullback-Leibler or K-L distance),
between the estimated poses of leader and follower vehicles
by formulating the vehicle following system as an optimization
problem. The aim is to search for an optimal control action
for the follower vehicle in the admissible control command
space. Relative information is used as a metric in the search
space and for evaluating the expected performance of vehicle
following. With this metric, and based on the assumption that
both vehicle pose (position and orientation) distributions are
Gaussian functions, the K-L distance of the vehicle following
system can be computed. With a series of admissible actions,
such as steering and velocity commands, for the follower
vehicle at each pose prediction step, and by minimizing the
K-L distance, an optimized action for the follower vehicle
can be obtained. The proposed vehicle following algorithm
has been tested and the performance of the follower vehicle
when the leader undergoes various kinds of maneuvers has
been analyzed. Results using this new method, as compared to
classical methods, have shown the advantages of this method.

I. I NTRODUCTION

For autonomous vehicle following, both longitudinal and
lateral controllers [1][2] are widely implemented. Longi-
tudinal controllers regulate the desired spacing and time
headway between the two vehicles. On the other hand, lateral
controllers are commonly implemented as a lane following
system. These two control strategies have been successfully
demonstrated on roads with large radii of curvature, such as
motorways [1][2]. However, for vehicle following in urban
environments [3][4], the radius of curvature can be signifi-
cantly lower, and the performance of these two controllers
may be degraded. Vehicle following in urban environments
requires the follower vehicle to trail thetrajectory of the
leader for safety purposes to avoid the cutting of corners in
low radius of curvature areas.

In the vehicle following function proposed by Ng et. al
[5], the pose states of both the follower and leader vehicles
can be obtained through an estimation process. Alternatively,
vehicle states, such as the dynamics and pose of the leader
vehicles, can be transmitted to the follower vehicle via
inter-vehicle communication systems [1][2][6]. Other vehicle
following systems instead use on board sensors, such as laser
scanners [7][8][9] and cameras [10], as the main perception
tools. However, real sensors introduce noise into the vehicle
following system. The sensor data uncertainty may affect
the reliability of the vehicle following system if it is not

addressed properly.
On the other hand, information theoretic frameworks have

been used extensively in mobile robotics applications. Typ-
ical applications are surveillance systems using Unmanned
Aerial Vehicles (UAVs) [11] and active exploration of an area
using Unmanned Ground Vehicles (UGVs) [12]. These sys-
tems aim to maximize the knowledge, or information, gained
by the robot, through optimized control actions [13][14][15].
The strategy also aims at minimizing the uncertainties of
the system state through the selection of a sequence of
control actions. Moreover, information theoretic frameworks
have been used in the machine vision community as a tool
in image association. For example, the K-L distance was
used as a measure for optimal feature selection such that
the feature was selected by maximizing the K-L distance
between target classes [16].

In anticipation of the above challenges in urban environ-
ments and the advantages of information theoretic frame-
works in minimising system state uncertainties, this paper
focuses on the generation of control commands for a follower
vehicle to pursue a leader vehicle. This is achieved by taking
into consideration the kinematic constraints of the vehicle
and the uncertainty in the measurement data obtained by
the follower vehicle. The control commands to the follower
vehicle are computed based on the minimization of the
relative information (K-L distance) between the two vehicles.
By formulating the vehicle following system as a Bayesian
representation, we obtain two probabilistic distributions de-
scribing the uncertainties of the states of the leader and the
follower vehicles. Before issuing an action to the follower
vehicle, a series of achievable actions is identified. This series
of achievable actions acts as the input to the pose estimation
filter of the follower vehicle. Then a set of predictions of
pose uncertainty for the follower vehicle, based on this series
of actions, can be obtained. The relative information can be
computed based on this series of expected pose uncertainties
with respect to the uncertainty of the state of the leader
vehicle. An optimized action for the follower vehicle can
be selected from the actions that yield minimum relative
information for the system.

The intended application is for vehicle following in urban
environments. As the cost/performance ratio of the electronic
components and sensors has significantly reduced in recent
years, the implementation of this system is now feasible.



II. V EHICLE FOLLOWING SYSTEM: PROBLEM

FORMULATION

The vehicle following function can be defined in an
analytical manner as follows:

Definition 1: Conventionally, vehicle following is achieved
when the follower vehicle attains the pose of the leader
vehicle some instant of time later, that is,

xF (t) = xL(t−m), m > 0 ∀ t > 0 (1)

wheret is the time andm is some time elapsed for a follower
vehicle to reach the position of, and align with, the leader.
xF (t) andxL(t) are the poses of follower and leader vehicles
at time t respectively.

For safe vehicle following, the following criteria must be
fulfilled:

‖ xF (t)− xL(t) ‖> dm (2)

wheredm > 0 is defined as a minimum safety separation
distance between the two vehicles at any time.

Furthermore, the velocities and steering angles of the
leader and follower vehicles at all times are constrained as

0 < vL ≤ VLmax

−αLmax ≤ φL ≤ αLmax

0 < vF ≤ VFmax (3)

−αFmax ≤ φF ≤ αFmax

where VLmax, VFmax, αLmax and αFmax ∈ R+ are the
maximum achievable velocities and steering angles of the
leader (indicated as subscript L) and follower (indicated as
subscript F) respectively.

However, as presented in our earlier work [17], it was
demonstrated that vehicle following can be achieved by
implementing a virtual trailer link model. In that model, the
leader vehicle is modelled as the towing vehicle and the
follower as the trailer. As the model suggested, the leader
vehicle (towing) is effectively pulling a follower vehicle
(trailer) via a virtual trailer link. Also, it has been proven
that the length of the virtual trailer link must equal the length
of the follower vehicle itself for an intrinsically safe vehicle
following system (figure 1) [17]. If a chain of vehicles is to
follow a leader, vehicles further down the chain suffer from
a phenomenon known as string stability [2]. This issue can
be addressed using this virtual trailer link model [17].

Definition 2: With the virtual trailer link model [17],
vehicle following is redefined as:

‖xF (t + δt)− xT (t)‖ = 0 ∀ t > 0 (4)

wherexT (t) is the pose of the virtual trailer at timet and
δt is the time increment between measurement.

With reference to figure 1, the motion model, in discrete
time state space, of the follower vehicle can be represented
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Fig. 1. Virtual trailer link model for vehicle following. At any time instance,
the follower vehicle perceives the pose of the leader with an on board sensor.
The pose,T, (xT , yT ) of the virtual trailer link is then computed. The
follower vehicle will be commanded to the new position,T. The whole
process will be repeated at the next time instant.

as1:

xF,(k+1) = f(XL,k,XT,k,Uk, ωk) (5)

whereXF,k, XL,k andXT,k are the histories of the state of
the follower vehicle, leader and virtual trailer respectively.
Uk is a vector of motion control signals input to the follower
vehicle, ωk is the motion uncertainty andf(· · ·) is a non-
linear function representing the motion of the follower.

The sensor is used to acquire the noisy observationzk of
the leader vehicle taken from the follower. The sensor model
is described as:

zk = h(xL,k,xF,k, νk) (6)

where νk is the sensor noise andh(· · ·) is a non-linear
function representing the sensor model.

Both the sensor and motion uncertainties will be modelled
as random variables. The sequences{ν0, ν1, . . . , νk} and
{ω0, ω1, . . . , ωk} are assumed independent, zero mean, white
processes with known covariances.

As formulated in [5], a complete vehicle following system
can be formulated as a probability density function (pdf):

P (xF,k,xL,k|Uk,Zk)
∝ P (zp

k|xF,k)P(xF,k|Uk,Zp
k−1)︸ ︷︷ ︸

localization of follower

×P (ze
k|xF,k,xL,k)P (xL,k|Ze

k−1)︸ ︷︷ ︸
Tracking of leader vehicle w.r.t follower (7)

where zp
k and ze

k are the current observations made by
the proprioceptive and exteroceptive sensors onboard the
follower. In vehicle following, the follower can predict its
pose iteratively with the on-board sensors. Also, the follower

1The lowercase notation, egxL,k denotes the current state and the
uppercase notation, egXL,k denotes the entire history of the state up to
and including timek. The state in discrete time space is represented by
subscriptk, egxL,k. For continuous time space, it is denoted in the form
of xL(t).



can make observations of the leader and predict the relative
pose of the leader. The advantage in representing the vehicle
following system under a Bayesian framework is that the
uncertainties in the system and sensor models are considered
in the formulation.

With the Bayesian framework as shown in equation (7),
the history of observations and control signals are recorded
and the poses of both vehicles are estimated. By collating
this information into an information vector,Ik,

Ik = {xF,k,xL,k,Zk,Uk−1} (8)

The control (heading and speed) commands for the fol-
lower, are the input to the vehicle following system. How-
ever, because of the vehicle’s kinematic constraints, there
are limits to the steering and heading commands which are
achievable.

Definition 3: The admissible control signals at timek are
the collection of all available control signalsAk. Therefore,

Ak = {a0(Ik),a1(Ik), . . . ,aN−1(Ik)} (9)

whereai is defined as a function ofIk at timek andN is
the total number of admissible control signals.

From definitions 2and 3 and the constraints of equation
(3), it is possible to define the problem of vehicle following
as finding an optimized control action from the admissible
control signals (indefinition 3) such that the condition in
definition 2 (equation (4)) is fulfilled under the constraints
defined indefinition 1(equation (3)). Hence, the problem of
vehicle following can be defined as:

a∗k+1 = arg min
Ak

‖x̂F,(k+1) − x̂T,k‖ (10)

wherea∗k+1 is the optimized control action for the follower.
Equation (10) can be viewed as an optimization problem.
The aim is to search for an optimized control signal, that is
to be input to the controller of the follower, in the admissible
command space. A metric (or objective function) can be
formulated for this purpose.

A. Information Theoretic Vehicle Following

For our vehicle following, it has been shown that it is
possible to estimate the poses of both the leader, hence the
pose of the virtual trailer, and follower vehicles using the
onboard sensors as in equation (7). However, two main issues
need to be considered:

• Sensor uncertainty, which affects the performance of
the vehicle following system. The uncertainty in the
pose estimates of the leader vehicle and the virtual
trailer must be considered by the follower when deter-
mining its next control action. Furthermore, the possible
consequences of sensor uncertainty, which might cause
vehicle following operation failure, has to be considered
during implementation.

• Vehicle Constraints: Typically, a command is sent
to the follower so that it can maneuver towards the
pose of the virtual trailer at timek. This is based on
the estimations of the leader and virtual trailer pose

relative to the follower. However, at any given timek,
in practice, the pose of the follower may not allow it to
attain the pose of the virtual trailer, due to the violation
of the kinematic constraints.

To minimize the effects of sensor uncertainty and vehicle
kinematic constraints, the concept of relative information
is used to determine the control actions for the follower.
This is made possible by equation (7). Two probabilistic
distributions, representing the uncertainty of the poses of the
vehicles, can be obtained in the recursive estimation process
and then be used in the computation of relative information.

Relative Information

As the relative information formulation will be used in
this paper, a summary of the concept is included here.

Relative information (K-L distance) [18] is a metric that
quantifies the ”goodness of fit” or ”closeness” of two prob-
ability density functions.

For the case of two Gaussian distributions [19], [20],

H(Q‖P ) =
1
2

log
|ΣP |
|ΣQ| +

1
2
Tr{Σ−1

P (ΣQ − ΣP )}

+
1
2
(µQ − µP )T Σ−1

P (µQ − µP ) (11)

where(µP , ΣP ) and(µQ, ΣQ) are the mean and covariance
matrix pairs for Gaussian distributionsP andQ respectively.
The first term on the right hand side, of equation (11)
represents the information gained, the second term represents
mutual information and the last term is actually the Maha-
lanobis distance of the two pdfs. From equation (11), if the
covariance matrices of the two distributions to be compared
are of the same magnitude, the K-L distance is exactly the
same as the measure of the Manalanobis distance. Whereas,
in the case of the two distributions having the same mean
values, the K-L distance measures the information gained and
the mutual information. Hence, the K-L distance formulation
compares both the mean values and covariance matrices of
the two distributions under consideration.

III. G ENERALIZED INFORMATION THEORETICVEHICLE

FOLLOWING IN A FINITE TIME WINDOW

In general, the vehicle following algorithm can be formu-
lated in a finite time horizon[k, k + M ], where k is the
current time step andM is the finite time window size in
the time horizon.

Suppose that the follower is controlled by a set of actions
at each time step denoted by

U = {u(k+i)}|i=0,1,2,...,M (12)

whereu(k+i) is the vector of actions specifying the control
command issued to the follower at timek + i.

At every time step, the follower makes observations about
the leader vehicle. The observation is denoted as

Z = {zk+i}|i=0,1,2...,M (13)

Let NF and NT denote the normal distribution functions
representing the mean poses and covariance matrices of the



follower and virtual trailer respectively for all time stepsj ⊂
[k, k + M ] defined in the time horizon.

NT = {N T,j}|j=k,k+1,,.....,k+M (14)

NF = {N F,j}|j=k,k+1,.....,K+M (15)

The termsN F,j andN T,j denote the distribution functions
computed at time stepj.

Let the admissible control command, at time stepk, for
the follower be denoted as

Ak = {an}|n=0,1,2,...,N−1 (16)

wherean is the control command to be input to the follower
andN is the total number of admissible commands available
for the follower.

The information theoretic vehicle following problem can
now be formulated as follows:

a∗(k+1) =
arg min

A
{C(Hj(N F,j+1‖N T,j)}|j=(k,k+1,...,k+M) (17)

subject to the constraints

g(xk,x(k+1), ....,x(k+N−1),

uk,u(k+1), ....,u(k+N−1)) ≤ gth (18)

whereC(.) is the composite scalar function representing the
K-L distance,Hj(.) is the K-L distance computed at timej,
xk is the augmented state vector of both the virtual trailer and
follower, g(.) is the nonlinear constraint vector function and
gth is the constraint threshold vector. The constraints include
the maximum allowable steering angle of the vehicle, safe
following distance and the allowable following speed.

Equation (17) provides an unique decision-theoretic solu-
tion to the vehicle following problem. In general, a control
command, such as velocity or steering angle, for the follower
can be generated by analyzing the relative information be-
tween the two vehicles over a certain time horizon. However,
optimization of equation (17) involves complex computation,
which involves multiple iterations. The iteration scales in the
order ofO(NM+1). Hence, for implementation, the look-
ahead time horizon for optimization is limited to one time
step, which is also known as the greedy method [12].

IV. I MPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 2 shows the simplified block diagram for our
vehicle following function. There are 4 major modules and
each of the functionalities are described as follow:

• Perception Module (PM): The follower vehicle is as-
sumed to have on board sensors. In our implementation,
the odometry data and the information from a gyroscope
were used to localize the follower. The pose of the
leader vehicle can be detected using a laser scanner,
camera or fusion of both images.

• Pose Estimation Module (PEM): With the observation
received fromPM, both the poses of the leader and
follower can be obtained using equation (7).

See Figure 4

See Figure 1

Fig. 2. Control block diagram for the proposed vehicle following system.

TABLE I

ALGORITHM FOR VEHICLE FOLLOWING FUNCTION

Steps Actions Formulation
1 Current Pose estimates x̂F,k|k,x̂T,k|k
2 Predict follower pose from

achievable actions
x̂F,k+1|k

3 Compute KL distance Hj ∀j = [1, M ]
4 Choose input and move follower a∗(k + 1)
5 Observe pose of leader z(k + 1)
6 Estimate new poses x̂F,k+1|k+1,x̂T,k+1|k+1

7 Loop steps 1 to 6 -

• Virtual Trailer Module (VTM) : This module receives
the estimated poses of the leader and follower from
PEM and generates the estimated pose of the virtual
trailer.

• K-L Module (KLM) : The greedy method presented in
[12] is implemented to determine the control actions
for the vehicle following function. A series of possible
steering commands are used as input to compute the
predicted poses of the follower and virtual trailer at the
next time step. The K-L distances are then computed
and the control action resulting from the minimum K-L
distance is then selected.

The entire algorithm is summarized in table I.

A. Experimental Setup

The proposed method was validated using simulations. To
make the simulation results comparable to an actual system,
the standard deviation settings for the simulated sensors were
set as close to real known values as possible2. For simulation
purpose, the desired forward velocity and heading angle of
the leader vehicle were generated at regular intervals based
on the desired leader vehicle’s trajectory. The leader vehicle
was modelled as a line and a line fitting algorithm was

2In this simulation, KVH DSP-5000 fiber Optic Gyro from KVH
Industrial, Inc (www.kvh.com) and and SICK LMS290 laser scanner
(www.sickusa.com) are simulated. The standard deviations (as obtained
from the respective data sheets) of the gyroscope, laser range and laser
bearing measurements were set to1.28o, 5cm and0.5o respectively.



implemented for vehicle detection using range scanner [5].
Detailed implementation issues of leader vehicle detection,
such as its false or failed detection, have been presented in
our earlier publication [5]. Nevertheless, a camera can also be
used for vehicle detection [4][10]. However, vision related is-
sues would need to be solved before reliable implementation
can be achieved, and is beyond the scope of this paper. The
leader vehicle was controlled by a standalone program during
the simulation. Its position was recorded as ground truth. The
follower was controlled by the K-L algorithm embedded in
another program3.

To test the feasibility of the new vehicle following theory,
a S-Curve trajectory for the leader vehicle is generated.
The purpose is to test if the proposed vehicle following
method can cope with sharp curves turning in both directions,
i.e, sharp left and right turns. The trajectory represents
constraints found in typical urban road environments and
attempts to challenge the controller’s response.

B. Performance Analysis
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Fig. 3. The ground truth of both the leader and follower vehicle trajectories.
Zoomed views (a) and (b) show the detailed trajectories of the vehicles at
various time steps.

As shown in figure 3, the leader vehicle is commanded to
manoeuvre in a straight path for a short period of time, then
to make a series of left and right turns.

Figure 4 shows the KL distances computed based on the
estimated poses and equation (17) when the leader vehicle
is moving straight (top figure), making a left turn (middle
figure) and making a right turn (bottom figure). For our
experiment, the total number of admissible steering angles,
N = 40, with the angular resolution of1 degree. As observed
in figure 4, the minimum K-L distance can be obtained, and
hence the optimized steering angle, can be chosen.

Figure 5 shows the path deviation between the vehicles
and the corresponding KL distances. The path deviation was
computed off-line based on the closest positions of the two
vehicles. The small path deviation as shown in figure 5
has suggested that the information theoretic based vehicle
following algorithm presented is robust to various kinds of

3Details of the system setup can be found in our earlier publication [5].
The maximum speed of the leader vehicle is set at 2m/s, simulating slow
speed vehicle following in urban environments.
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maneuvers. Furthermore, from figure 5, the trend in the path
deviation plot resembles the trend in the K-L distance plot.
For example, this can be particularly observed from the figure
between time steps 400 to 800 (which corresponds to the
location marked ’A’ in figure 3). From time steps 400 to 580
(zoomed view (a) in figure 3), the leader is making a gradual
left turn. As the turn rate is gradual, the orientation difference
between the two vehicles will eventually decrease, while the
inter-vehicle separation distance between the two vehicles
will remain constant. Therefore, the KL distance decreased.
From time steps 580 to 630 (zoomed view (a) in figure 3),
the leader vehicle is making a sharp right turn. As the turn
becomes sharp, the orientation difference between the vehicle
will be large and hence the K-L distance increased. From
time steps 630 to 800 (zoomed view (b) in figure 3), the
leader vehicle is making gradual left turn. Similarly, the K-
L distance decreased gradually. The above scenarios have
verified that the K-L distance can be used as a metric for
evaluating the performance of the vehicle following function.

Figure 6 shows the steering angles computed from the
K-L metric using a pure pursuit algorithm [21]. It can be
observed from the figure that the pure pursuit algorithm has
computed the steering angles to be greater than20 degrees,
when the leader vehicle is making sharp turns. These angles
have exceeded the maximum allowable angle for a typical
vehicle. Also, the transition of the steering angles from the
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TABLE II

PATH DEVIATION RESULTS COMPARISON

Stefan[10] Wang[9] Lu[7] K-L
Avg(m) 0.2 0.3 0.15 0.2
max(m) 0.7 0.5 0.35 0.35

left to the right turn is large for a pure pursuit algorithm.
This may cause discomfort to the driver. On the other hand,
the steering angles as generated by the K-L metric is within
the allowable steering angle of the vehicle. The transition of
the steering angles as generated by K-L metric is gradual.

Table II shows a direct comparison of the path deviation
achieved by the proposed system with the experiments car-
ried out by Stefan [10], Wang [9] and Lu [7]. The vehicle
following algorithm implemented by Stefan [10] achieved
a maximum path deviation (between the two vehicles) of
approximately70 cm. The system implemented by Lu [7]
achieved a maximum path deviation of35 cm. The vehicle
following system by Wang [9] has achieved a maximum
path deviation of50cm. As for our case, the maximum path
deviation is35 cm. Our system has achieved an average path
deviation of20cm throughout the whole trajectory. Overall,
the K-L algorithm is able to optimize the control actions for
the follower to achieve close pursuit of the leader vehicle
and at the same time provide a smooth input to the follower.

V. CONCLUSIONS

Autonomous vehicle following capabilities have been
achieved using an information theoretic framework based on
the K-L distance metric. It optimizes the control inputs for
the follower vehicle so as to minimize the pose error between
the follower and the leader vehicles. Both the follower
vehicle’s constraints and the uncertainties in the estimation
of the poses of both vehicles have been considered. Under
this framework, the relative information or K-L distance has
been used as a metric to evaluate a sequence of control
actions, which are used as inputs to the follower. The method
has been simulated and the results have shown that the
information theoretic vehicle following system is robust to
estimation errors and the safe separation of the vehicles has
been considered. The system is robust as uncertainties in the

estimation of the poses of both vehicles are considered and
taken into account as part of the vehicle following function.
The inter-vehicle distance is maintained as desired and thus
it is possible to warrant that the follower is in a position to
stop safely in case of emergencies.

An extension of our approach is to use a priori informa-
tion, by predicting the future trajectory of the leader vehicle.
This is possible if the curvature information of the road that
lies ahead is made available. This information has already
been made available in standard car navigation systems and
can be incorporated as an additional observation which could
complement our information theoretic framework.
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