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Abstract -The imprecision of sensor measurements due
to systematic and nonsystematic errors can give rise to
severe problems in several autonomous navigation tasks.
In particular, the errors due to sensor bias can render
existing Simultaneous Localization and Map Building
(SLAM) algorithms useless as such biases cause the
estimators to diverge. This paper describes a method to
estimate and compensate these ever present and
particularly cumbersome sensor and input biases in real
time in the context of SLAM applications without an a
priori map of the environment. The validity of the
proposed methodology is verified via simulations for the
case of an autonomous land vehicle navigating in a
completely unknown 2D terrain. It is assumed that biased
and noisy range and bearing measurements to point
landmarks are obtainable in real-time, using a sensor
such as a laser scanner.

Keywords: SLAM, tracking, filtering, estimation, map
building, localization, robotics.

1 Introduction

The problem of localization and map building has often
been recognized as one of the major problems of
autonomous vehicle navigation in robotics literature. It is
also perceived that the capability of simultaneous self-
localization and map building without an a priori map
would make a robot truly autonomous. The SLAM
problem examines whether a vehicle in an unknown
environment starting from an unknown location can build
a map of its environment incrementally whilst
simultaneously using the map to localize and navigate in
real time. The first true solution to the simultaneous
localization and mapping problem was due to Smith, Self
and Cheeseman [1], They cast the problem in a stochastic
framework and used an extended Kalman filtering (EKF)
approach to estimate the landmark positions and vehicle
pose. The major highlight of the formulation was its
consistent probabilistic representation of robot’s pose, and
landmark position uncertainties and their relationships.
The methodology is still considered to be the primary
framework of most feature based stochastic SLAM
algorithms. This was followed by the work of Mourtarlier
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and Chatila [2] and work on visual navigation by Ayache
and Faugerras [3]. Since then, several other alternative
approaches have been proposed, which include the
occupancy grid based localization [4] and the more recent
probabilistic and particle filter based methods [5], [6] and
[71.

In this paper, the feature based approach to SLAM set
within an EKF/stochastic framework is used for sensor
and input bias estimation and compensation. Success of
the approach to the SLAM depends on how well the
dependencies or correlations among map elements and the
vehicle are considered. Although, within the stochastic
mapping framework, the EKF based estimation has gained
much popularity in the SLAM research community, it
poses several shortcomings. Major shortcomings of an
EKF based SLAM approach are its susceptibility to data
association errors and inconsistent treatment of
nonlinearities. Further, the propagation of sensor
uncertainties due to systematic biases and random errors
accentuate the problems and often results in an
inconsistent and inaccurate map. As more and more
feature measurements are taken and used to update the
map and vehicle pose estimates, bias errors tend to spread
across the entire map resulting in a false and inconsistent
map. Another major shortcoming of the approach is the
computational complexity (storage and time) due to the
requirement of maintaining of all correlations (map
elements and vehicle) explicitly in the state vector
covariance matrix. However several researchers have
addressed this issue in various ways [8], [9] and [10] and
therefore not considered in this work.

There are several reasons for nonlinearity and bias
related uncertainty propagation in the stochastic mapping
framework [11]. Nonlinear transformations in the EKF
cause the Gaussian assumptions in measurement and
process noise invalid, biased or underestimated. Another
reason is the violation of linear assumptions in the first
order approximations by Taylor series expansion if the
measurement and vehicle process noise is large. Persistent
biases that exist due to modeling errors, sensor biases and
calibration errors also contribute to map divergence and
errors. In small-scale SLAM implementations, it has been
shown that by adding more stabilizing process and
measurement noise the modeling errors and non-linearity



in state and measurement equations can be offset [13] and
[14]). However, this will not always ensure consistent
results in the presence of large sensor and control input
biases, which are inevitably present in practical situations.
Thus, bias and modeling offsets [11],[14] and their
cumulative effects cause significant problems in large-
scale outdoor SLAM applications. This paper proposes a
methodology to explicitly account for the sensor biases in
the measurements and control input offsets, in the context
of EKF/SLAM so as to obtain consistent and accurate
results for the map and vehicle pose.

The paper is organized in the following manner. In
section 2, the process and observation models are
formulated and the feature based stochastic SLAM
framework employing an estimation theoretic EKF is
summarized. In section 3, the EKF/SLAM formulation
described in section 2 is modified to explicitly account for
input and sensor biases within the same EKF/stochastic
framework. This is followed by a discussion of issues of
observability. In section 4 simulation results are shown to
verify the effectiveness of the proposed methodology.
Finally in section 5, the work is summarized with
concluding remarks.

X0

Figure 1-Vehicle and world coordinate frame
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2 EKEF Based Stochastic Mapping

The basic framework used in the EKF based SLAM
algorithms represent both the vehicle and landmark
locations by absolute coordinates with reference to some
reference world coordinate frame {W}. The origin of this
frame can be arbitrarily chosen and usually it is the initial
position of the vehicle. The vehicle and measurement
models are in general nonlinear.

2.1 Process and Observation Models

The process model comprises of the vehicle’s kinematic
model, and the landmark model.

Vehicle model

For the vehicle shown in Figure 1, the kinematic motion
model is given by the nonlinear equations;

X, (k+1) = F(X, (k),U(k),u, (k))+ v(k) 4))
x(k) + Atu(k) cos(6(k))

F(Xy, (), U(R)) = | y(k) + Atu(k)sin(O(k)) 03]
k) + Atu(k) tan(y (k))

The vehicle pose estimate at time k is given by
Xv(k)=[x(k) y(k) e(k)]T where the vehicle position
and orientation at time k are denoted by
(x(k), y(k)) and & (k) respectively.
Uky=futky yoF u_ (o) ~ N (0,0, (k)
and w(k) ~ N(O,Q,(k))are the control input, its

additive noise and additive process noise respectively. L
is the vehicle wheel base. Hence, the overall process noise
covariance of the vehicle kinematic model is;

T
aF(x,y,e)) (aF(x,y,e))
k)= k + k 3
Q()( 22200y ()| =222 0,k
Map model
Point landmarks (features) in the environment are
represented by their position vectors,
L L LT

Xi =(xi ,y,-) (i=1,...n) with respect to the world

frame. Since the landmarks are assumed stationary the
model of a landmark, i, is;



x; (k)

@
0

xFwn=xka =

Sincé the map is a collection of » landmarks, the vector
representing its state X, (k) is;

L L L T
Xm(k):[Xl (k)"" Xi (k)’ it Xi (k)] (5)
And hence, the state transition model of the map vector is;

X (k+1)= X, () (6)

Overall process model

The overall process comprises of the vehicle kinematic
model and the map model. Thus the overall state vector
X(k), is formed by concatenating the vehicle state with the
map state as follows;

Xy (k)

Xm(k)} @

X(k) = [

It may be noted that the process state model evolves as
given by equations (2) and (4).

Observation model

From figure 1 it follows that the absolute position of the
sensor, S=(x, (k), y, (k)) attime k is given by ;

2
ys (k)
It is assumed that the sensor measures, in its field of view,
the range, #(k), and bearing, cz(k), to a point target
(landmark). Thus the measurement model for the
landmark, X/ (k)= (x"(k),y} (k))", with respect to
the vehicle coordinate frame {V}is :

®

x(k)+ acos(8(k))
y(k) + asin(@(k))

Z(k) = [;‘(’;c))] = h(X, (k), x;" k), yiL (k))+ w(k) )]
L )= x,000% + G () - 35 (0
- L
= S (k) -y (k +w(k) (10)
© ] J’,L() ys (k) o
x (k)-xs(k) ) 2
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where the measurement noise sequence, W(k) is given by
w(k) ~ N(O, R(k)) and it is temporally uncorrelated
with the process noise.

2.2 Algorithm outline

Landmark tracks are initiated, maintained and
deleted according to the method outlined in [12]. The
method keeps two lists; one for confirmed landmark
tracks and the other for tentative landmark tracks. At the
beginning of the map building process, both lists are
initialized to null. Whenever a new candidate lJandmark is
detected it is checked with the landmarks of the confirmed
and tentative lists. If the candidate landmark observation
does not associate with any confirmed or tentative
landmarks, it is most probably a new landmark and hence
added to the tentative list. If it is associated with a
tentative landmark, it is used to update the particular
tentative landmark. If it is associated with a confirmed
landmark, it is used to update the augmented process state
vector (which includes the map and vehicle state) and its
covariance according to the EKF update equations.
Sufficiently stable landmark tracks observed over a period
are moved to the confirmed landmark list. A nearest
neighbor data association filter is used for association of a
landmark observation to a previously observed landmark.
A measure of quality is determined for the confirmed
landmarks based on the probability density function of the
observation innovations of observation to track
associations. Those tracks that do not achieve a pre set
value of landmark quality are deleted from the confirmed
landmark list and hence the map state vector.

2.3 Map building and localization

EKF equations used for map building and vehicle state
estimation are summarized below. The overall state
vector comprising the vehicle and map states is given in
equation (7). At each sampling time, measurements
associated with the confirmed landmarks are used to
update the state vector according to the usual predictor
corrector form of the extended Kalman filter. The state
vector prediction and covariance prediction is
implemented using the following equations.

[xp+118)
X(kHIk)_[Xm(kHlk)] an
Xy (k+1k)=F(X, (k| k),UKk) (12)
Xk +11K) = Xy () (13)
Pk +1]k) = APk | k)4l 10, ® (14)



OF(x,9,0) |
Where the Jacobian 4 =| 9(x, y,6) i 3521 | and
0;\'2'1 ; 2mx2n

are 3x2n null matrix
oF(x,,0) .
—— is
a(x,y,6)

evaluated at every sampling instant for the estimated

vehicle state at time k. When O.

2nx2n

the matrices, and O, _,, and /

2nx2n

and a 2nx2n identity matrix. Jacobian

is a 2nx2n null

matrix, Qaug , is given by;
|
o |20 O
H
au; ;
€ O§x2n i 02nx2n

The predicted measurement and the measurement
Jacobian, H for the i" landmark can be evaluated as
follows;

Z(k+11k) = WXy (k+1] k), x; (k| k), y; (k| k) (15)

or

or
—_— 0.0 — 0....0
oX (x,y,0) ox, Oy,
H= (16)
oa da oda
_— 0.0 — — 0...0
ox (x,y,0) ox, oy,

If the true measurement is Z(k+1), the innovation is
v(k+1), its covariance S(k+1) and the Kalman gain is
W(k+1), the update equations for the map augmented
state vector and its covariance matrix are given by;

wk+)=Z(k+)—-Z(k+1|k) an
Sk +1)= HP(k +1| K)HT + Rk +1) (18)
Wk+1)y=Plk+1|OHT Sk +1) (19)

X(k+1k+1)=X(k+1]k)+ Wk + vk +1) (20)

P(k+]|k+1)=P(k+1|k)—W(k+l)S(k+1)WT(k+l) 3}

The above set of equations is used to update the vehicle
location and the feature map simultaneously with their
uncertainties.
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3 Sensor and input bias estimation

Work by Clark [13] and Williams [14] are some
example of earlier successful attempts to estimate vehicle
parameters and input biases in the context of SLAM.
Here, a rigorous framework is formulated for estimating
all biases, including the vehicle inputs and sensor biases
in a consistent manner. In [15] Bar-Shalom notes that, in
target tracking radar systems using moving platforms
where the platforms’ location estimates obtained from
GPS are subject to slowly varying biases, and there are no
fixed known targets to estimate their biases, the next best
alternative is to use targets of opportunity at fixed but
unknown locations. It is also noted that under certain
observability conditions these biases can be estimated.
This idea is further extended by the work of Okkello [16]
for radar bias estimation, joint registration and track-to-
track fusion based on measurement estimates generated by
geographically separated radar trackers. Our approach
inspired by the above work[15] and [16] by using the
unknown, fixed landmark location estimates obtained by
the uncertain measurements obtained by the biased
sensors whose locations are also uncertain to estimate the
sensor intrinsic bias parameters and the vehicle input
biases.

3.1

In this section it is shown how any bias in a sensor(s) and
the control input(s) can be estimated and compensated for,
in the context of SLAM. For simplicity the derivation is
given for a single sensor with range and bearing biases,
together with control input biases, without losing the
generality of including many sensors. Let the stacked
constant biases in the input vehicle velocity, and steering
angle be #,(k), and y,(k), respectively. Should these

Problem Formulation

bias parameters be time varying it is straightforward to
model their time varying characteristics in the given
formulation. Suppose, the single sensor’s (possibly a laser

scanner) biases in the range and bearing ber, (k) and

a, (k) respectively.

Process model with bias

A vector of biases, X b (k) , is formed incorporating all

the biases as shown in equation (22).
X, (k) = [uy (k) y,(k) 1, (k) a, (k)] (22)

Now the overall process state is augmented to include the
bias vector X b (k) , as follows:



X V(k)
X(k)=| X, (k)
X (k)

m

23)

Equations (1) through (21) are modified appropriately as
required to reflect the new overall state vector that include
the unknown biases. The resulting modified process state
equations are given in equations (24) to (27).

X, (k+1|k)y=F(X,(k|k),U(kK)+U as(k [ k) (24)

bi

uy (k1 k)
where, U,is (k1K) = (25)
75 (k1K)
X, (k+11k)
X(k+11k)=| Xp(k|k) (26)
X,k k)

The state covariance prediction (14) is the same except its
components are modified as;

2B Onea

= AT
o3x(2n +4) ! O(Zn +4)x(2n +4)

where

Q

aug

Osuaniay > 18 @ 3x(2n+4)  null matrix, Ogpeaynrs) 1S @
(20+4)x(2n+4) null matrix and the Jacobian A is given
by;

6 i _6 i, |
00 3,0) | Buy,y,) | 3H2tD)
AN T Yo SO S
1 % i T Osene)
ol ¥o, ¥
3x2n+2) | C2n+ a2 | @n+2x(2n+2)
27N
and G=F(X,(k|DU®+U, (IE) (8

where, Osyan+2), O2x3, Ozxniz) are size 3x(2n+2), 2x3 and
2x(2n+2) null matrices, Ipnoxeotzy 1S @ (2n+2)x(2n+2)
identity matrix. Similarly the Jacobian of the input noise
given by (3) also has to be modified to account for the
biases.
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Measurement model including bias

Measurement model equations given by (8), (9) and (10)
are appropriately modified to include the biases in the
range and bearing measurements. Thus, the following
measurment prediction equations result :

Z(k+1]k) =
h(Xy (ke +1) k), x; (k[ k), y; (k| k),Xb(k | k) (29)

Let Z(k +1|k):[z, ZZ]T, then the new measurement

Jacobian H, in the presence of biases when observing the
i" landmark is;

azl 821 621
-—00100..0 — — 0...0
H= X, (x,y,0) axi ayi
074 0z, 0z
— 2 00010..0 —2 —2% 0...0
0X,(x,y,08) ox; 0y;
(30)

Prediction and update equations correspond to (17) to (21)
with appropriate substitutions described above.

3.2 Observability Issues

The derived EKF/SLAM will only converge if all of the
states are observable. By definition, information about an
observable state is obtained from the observation
equations. In the absence of this information, the filter
estimate for that state will not simply converge to a
meaningful solution. In general there are no specific rules
governing the observability of nonlinear stochastic
systems and therefore it is difficult to have prior
judgements on the viability of EKF. However an
observability test similar to those suitable for linear, time
invariant systems may be carried out for nonlinear
systems by linearising the observation model using Taylor
series and examining the rank of the Jacobian of the
observation model. In this case since there is only one
state prediction prior for a set of many features, at first
glance, it appears that the system is unobservable.
Nevertheless, when more and more observations of the
fixed landmarks are taken, it is possible to form a stacked
measurement vector, resulting in a stacked Jacobian
having the required minimum number of independent
rows making its row rank equal to the dimension of the
state vector. Hence in simple terms, provided an adequate
number of observations satisfying the above conditions
are available, the linearised system will be observable.



4 Simulation Results

Simulations, in an artificial unstructured environment
(Figure 2) are conducted to show the importance of
accounting for biases and the effectives of the proposed
formulation for bias estimation to guarantee map
convergence and vehicle localization. In figure 2 the
artificial environment and the vehicle are shown. The
symbol ‘.” denotes an actual landmark and the thick line
denotes the actual path traversed by the vehicle. The thin
line in the Figure 2 is the estimated vehicle path. A
landmark’s position estimate is shown by an ‘x’, together
with its uncertainty ellipse (two sigma limits in the x and y
directions). Estimated landmark locations and the vehicle
path almost coincide with the true quantities in the figure.
Gaussian noise and biases are added to the vehicle’s control
inputs, viz. speed and steering angle.

Vehicle Trajectory and Landmark Estimates
35 T T T T v

Y coordinate [m}
=

B 75 w0 8 9 9 w0 105 110 115 120
X coordinate [m]
Figure 2 — Vehicle Trajectory and landmark estimates in
SLAM with bias correction applied.

A range/bearing sensor (modeling a 2D laser scanner)
with predefined uncertainty in range and bearing together
with biases is used as the external landmark sensor. The
exact bias values applied in the simulation are shown in
table 1.

Table 1 — Parameters used in simulation

Parameter Value
Speed input bias[m/s] 0.25
Steering angle input bias[degrees] 1.0
Sensor range bias[m] 0.5
Sensor bearing bias[degrees] 2.0

The vehicle’s starting position is arbitrarily chosen with
some known uncertainty. Landmarks are initialized and
the data association performed as discussed in section 2.
Figure 3 is obtained from the same SLAM algorithm run
with the above biased sensors but without bias
compensation aplied. The dashed lines show the three
sigma limits and it is clear that the position error is out of
the 99.74% confidence limits imposed by the three sigma
limits. Figures 4, 5 and 6 show the vehicle position and
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orientation estimation error plots. The dashed line is the
one sigma limit, which clearly shows that the errors are
bounded in the SLAM algorithm with the bias estimation
incorporated. Figures 7, 8, 9 and 10 show the sensor bias
estimates. It is clearly evident that bias parameters are
being accurately determined. The results also indecate
that there

L isation error in X

Eror [m)

Time [s}
Figure 3 —Position error in localisation without bias correction
applied
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b
- o

o
N

03 brwny Mo vt o minnon:
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Time {s]

Figure 4 - Vehicle x coordinate error in localisation with
bias correction applied
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Figure 5 - Vehicle y coordinate error in localisation with
bias correction applied



Orientation error in focalisation
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0.0t

-0.01

Orientation Eror (rad)
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-0.02 H
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Figure 6 — Vehicle orientation error in localisation with
bias correction applied

Laser range scanner range bias estimation

1] 100 200 300 400 500 600 700 °B00 900 1000
Time [s]

Figure 7 —Laser scanner range bias estimation

Estimation of laser sensor bearing bias
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Figure 8 —Laser scanner bearing bias estimation

Estimation of input speed bias

‘Speed Bias Estimation|m/s]

H
8 o0 200 300 400 500 600 700 800 900 1000
Time [s)

Figure 9 — Speed input bias estimation
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Steering angle bias estimation

Steering angle bias estimation|degrees|

o 100 200 300 400 500 600 700 800 S00 1000
Time [s]

Figure 10 — Steering angle input bias estimation

5. Conclusion and Future Work

The work carried out clearly shows that it is possible to
estimate and compensate any sensor intrinsic parameters
such as biases which are present in almost every practical
SLAM application. Also it is evident that the estimation of
these parameters is vital for consistency of map and its
convergence and hence meaningful vehicle localization.
Moreover the modification for bias compensation adds
reasonably little computational overhead to the existing
EKF based SLAM algorithms and is also applicable to
almost anyother SLAM formulation such as the
computationlly efficient approaches given in (7], [8] and
[9]. The approach however is somewhat sensitive to the
data association which is intrinsic to almost every EKF
based estimator. The nearest neighbor data association
filter is not appropriate for more complex, cluttered real
time environments. It is therefore suggested that a more
robust approach such as multiple hypotheses tracking be
employed in actual practice. Future work will address the
issues such as more robust data association methods,
determining optimal path configurations, most informative
landmark observations and sensor configurations that
minimize the sensor biases, faults and other errors in
SLAM algorithms and improving the overall efficiency of
fully deployable SLAM implementations.
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