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Abstract— This paper proposes a tractable solution to
feature-based (FB) SLAM in the presence of data association
uncertainty and uncertainty in the number of features. By
modeling the feature map as a random finite set (RFS),
a rigorous Bayesian formulation of the FB-SLAM problem
that accounts for uncertainty in the number of features and
data association is presented. As such, the joint posterior
distribution of the set-valued map and vehicle trajectory is
propagated forward in time as measurements arrive. A first
order solution, coined the PHD-SLAM filter, is derived, which
jointly propagates the posterior PHD or intensity function
of the map and the posterior distribution of the trajectory
of the vehicle. A Rao-Blackwellised implementation of the
PHD-SLAM filter is proposed based on the Gaussian mixture
PHD filter for the map and the particle filter for the vehicle
trajectory. Simulated results demonstrate the merits of the
proposed approach, particularly in situations of high clutter
and data association ambiguity.

Index Terms— Bayesian SLAM, Random Finite Set (RFS),
Feature-based Map, Probability Hypothesis Density (PHD),
Point Process

I. INTRODUCTION

Following seminal developments in autonomous robotics
[1], the problem of simultaneous localisation and mapping
(SLAM) gained widespread interest, with numerous poten-
tial applications ranging from robotic planetary exploration
to intelligent security patrolling [2], [3], [4], [5], [6], [7].
This paper focusses on the Feature-based (FB) approach that
decomposes physical environmental landmarks into paramet-
ric representations such as points, lines, circles, corners etc.,
known as features. FB maps are comprised of an unknown
number of features at unknown spatial locations [8]. Esti-
mating a feature map, thus requires the joint estimation of
the number of the features and their locations.

Current state-of-the-arts FB-SLAM solutions address two
separate problems [5]:
• determining the data (to feature) association; and
• given the association, estimation of features and vehicle

pose via stochastic filtering.
This two-tiered approach to SLAM is sensitive to data

association (DA) uncertainty [9]. This sensitivity is due to
the fact that the current Bayesian SLAM framework does not
in fully integrate DA uncertainty into the map estimation,
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specifically, the filtering step assumes known DA. While a
two-tiered approach is efficient and works well when DA
uncertainty is low, it is not robust to high DA uncertainty e.g.
in scenarios with high clutter and dense features and/or when
the vehicle is moving/turning quickly. A SLAM solution that
is robust to DA under high clutter requires a framework that
fully integrates DA uncertainty into the estimation of the
map (and vehicle trajectory).

This paper advocates a fully integrated Bayesian frame-
work for FB-SLAM under DA uncertainty and unknown
number of features. The key to this formulation is the
representation of the map as a finite set of features. Indeed,
from an estimation viewpoint, the map is fundamentally a
finite set (see section II-A). Using RFS theory, the FB-
SLAM problem is posed as a Bayesian filtering problem
in which the joint posterior distribution of the set-valued
map and vehicle trajectory are propagated forward in time
as measurements arrive. The proposed Bayesian FB-SLAM
framework allows for the joint, on-line estimation of the
vehicle trajectory, the feature locations and the number of
features in the map. Preliminary studies using ‘brute force’
implementations can be found in [10], [11], [12]. In this
paper, a tractable first order solution, coined the PHD-SLAM
filter, is derived, which jointly propagates the posterior PHD
or intensity function of the map and the posterior distribution
of the trajectory of the vehicle. A Rao-Blackwellised (RB)
implementation of the PHD-SLAM filter is proposed based
on the Gaussian mixture PHD filter for the map and the
particle filter for the vehicle trajectory in a similar manner
to FAST-SLAM. Simulated results demonstrate the merits
of the proposed approach, particularly in situations of high
clutter and data association ambiguity.

II. BAYESIAN FEATURE-BASED SLAM

This section discusses the mathematical representation of
the map and presents a Bayesian formulation of the FB-
SLAM problem under uncertainty in DA and number of
features. In particular it is argued that fundamentally the
map is a finite set and the concept of a random finite set is
essential to Bayesian FB-SLAM formulation.

A. Mathematical representation of the Feature Map

In the context of jointly estimating the number of features
and their values, the collection of features, referred to as the



feature map, is naturally represented as a finite set. The ratio-
nale behind this representation traces back to a fundamental
consideration in estimation theory - estimation error. Without
a meaningful notion of estimation error, estimation has very
little meaning. Existing SLAM formulations do not admit a
rigorous notion of mapping error despite the fact that it is
equally as important as localisation error. To illustrate this
point, recall that in existing SLAM formulations the map is
constructed by stacking features into a vector, and consider
the following simplistic scenarios,
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Fig. 1. Hypothetical scenario showing a fundamental inconsistency with
vector representations of feature maps. How should the error be assigned
when the estimates of the number of features in M̂ is incorrect?

A finite set representation of the map, Mk =
{m1

k, . . . , mNk

k }, where m1, . . . ,mNk are the Nk features
present at time k, admits a mathematically consistent notion
of estimation error since distance between sets is a well
understood concept. In contrast, stacking individual features
into a single vector does not admit a satisfactory notion of
error as illustrated in Figure 1. The realisation that the map
is set is not new. Indeed, in a number of influential works
the map has been defined as a finite set [7]. However the
mathematical tools for dealing with random finite sets were
not yet available to the SLAM research community.

It should be noted that, while finite-sets naturally capture
a feature map, a finite set map representation for autonomous
grid-based frameworks [13], [14], is unnecessary, since the
number of grid cells is known (a priori tessellation), and the
order of the map states signifies their spatial location in the
grid [12].

For the most common sensor models considered in
SLAM, the order in which sensor readings are recorded at
each sampling instance bears no significance. Moreover, the
number of measurements, Z(k), at any given time is not fixed
due to detection uncertainty, spurious measurements and
unknown feature number. Thus, this type of measurement
may also be naturally represented by a finite set of readings,
Zk = {z1

k, z2
k, . . . , z

Z(k)
k }.

B. The Bayes FB-SLAM Filter

In the Bayesian estimation paradigm, the state/parameter
and measurement are treated as realizations of random
variables. Since the map (and the measurement) is a finite
set, the concept of a random finite set is essential for
Bayesian map estimation. In essence, a random finite set
(RFS) is simply a finite-set-valued random variable. Similar
to random vectors, the probability density (if it exists) is
a very useful descriptor of an RFS, especially in filtering

and estimation. However, the space of finite sets does not
inherit the usual Euclidean notion of integration and density.
Hence, standard tools for random vectors are not appropriate
for random finite sets. Mahler’s Finite Set Statistics (FISST)
provides practical mathematical tools for dealing with RFSs
[15], [16], based on a notion of integration and density that
is consistent with point process theory [17].

Let M be the RFS representing the entire unknown map
and let Mk−1 be the RFS representing the subset of the map
that has passed through the field-of-view (FOV) of the on-
board sensor with trajectory X0:k−1 = [X0, X1, . . . , Xk−1]
at time k − 1, i.e.

Mk−1 = M∩ FOV (X0:k−1). (1)

Note that FOV (X0:k−1)=FOV (X0) ∪ FOV (X1) ∪ · · · ∪
FOV (Xk−1). Mk−1 therefore represents the set on the
space of features which intersects with the union of indi-
vidual FOVs, over the vehicle trajectory up to and including
time k−1. Given this representation, Mk−1 evolves in time
according to,

Mk = Mk−1 ∪
(

FOV (Xk) ∩ M̄k−1

)
(2)

where M̄k−1 = M−Mk−1 (note the difference operator
used here is the set difference), i.e the set of features that
are not in Mk−1. Let the new features which have entered
the FOV, i.e. the second term of eqn.(2), be modeled by
the independent RFS, Bk(Xk). In this case, the RFS map
transition density is given by,

fM(Mk|Mk−1, Xk) =∑

W⊆Mk

fM(W|Mk−1)fB(Mk−W|Xk) (3)

where fM(·|Mk−1) is the transition density of the set of
features that are in FOV (X0:k−1) at time k − 1 to time k,
and fB(·|Xk) is the density of the RFS, B(Xk), of the new
features that come through the field of view at time k.

Modeling the vehicle dynamics by the standard Markov
process with transition density fX(Xk|Xk−1, Uk), where
Uk denotes the control input at time k, the joint transition
density of the map and the vehicle pose can be written as,

fk|k−1(Mk, Xk|Mk−1, Xk−1, Uk) =
fM(Mk|Mk−1, Xk)fX(Xk|Xk−1, Uk). (4)

The measurement Zk received by the vehicle with pose
Xk, at time k, can be modeled by

Zk =
⋃

m∈Mk

Dk(m,Xk) ∪ Ck(Xk) (5)

where Dk(m,Xk) is the RFS of measurements generated
by a feature at m and Ck(Xk) is the RFS of the spurious
measurements at time k. Therefore Zk consists of a random
number, Z(k), of measurements, whose order of appearance
has no physical significance. This cannot be explicitly en-
capsulated by the classical vector measurement models. It is



also assumed that Dk(m,Xk), and Ck(Xk) are independent
RFSs conditional on Xk.

The RFS of the measurements generated by a feature at
m is a Bernoulli RFS1 given by, Dk(m,Xk)=∅ with prob-
ability 1−pD(m|Xk) and Dk(m,Xk)={z} with probability
density pD(m|Xk)gk(z|m,Xk). For a given robot pose Xk,
pD(m|Xk) is the probability of the sensor detecting a feature
at m, and when conditioned on detection gk(z|m,Xk) is the
likelihood that a feature at m generates the measurement
z. The RFS Ck(Xk) represents the spurious measurements
registered, which may be dependent on the vehicle pose, Xk.

Using Finite Set Statistics [16], the likelihood of the
measurement Zk is then given by,

gk(Zk|Xk,Mk) =∑

W⊆Zk

fD(W|Mk, Xk)fC(Zk −W|Xk) (6)

with fD(·|Mk, Xk) denoting the density of the RFS of
observations, and fC(·|Xk) denoting the density of the
clutter RFS, Ck. It can be seen that this likelihood di-
rectly encapsulates the inherent measurement uncertainty,
with fD(·|Mk, Xk) considering detection uncertainty and
measurement noises, and fC(·|Xk) modeling the spurious
measurements. This density is typically a priori given as
Poisson in number and uniform in space [2], [6]. It is inter-
esting to note that by characterising clutter through a dis-
crete distribution (Poisson) and density function (uniform),
FB-SLAM related literature that probabilistically consider
clutter are in fact adopting an RFS representation.

The Bayesian FB-SLAM recursion is next outlined. Let
pk(Mk, X1:k|Z1:k, U1:k, X0) denote the joint posterior den-
sity of the map Mk, and the vehicle trajectory X1:k. For
clarity of exposition, the following abbreviations shall be
adhered to,

pk|k−1(Mk, X1:k) = pk|k−1(Mk, X1:k|Z0:k, U0:k−1, X0)
pk(Mk, X1:k) = pk(Mk, X1:k|Z0:k, U0:k−1, X0)

The recursion for a static feature map is then given as
follows,

pk|k−1(Mk, X1:k) = fX(Xk|Xk−1, Uk)×∫
fM(Mk|Mk−1, Xk)pk−1(Mk−1, X1:k−1)δMk−1

pk(Mk, X1:k) =
gk(Zk|Xk,Mk)pk|k−1(Mk, X1:k)

gk(Zk|Z0:k−1, X0)
(7)

where the δ implies a set integral. The joint posterior
density encapsulates all statistical information about the map
and vehicle pose, that can be inferred from the measurements
and control history up to time k. The Bayesian FB-SLAM
recursion (7) integrates uncertainty in DA and number of

1The Bernoulli RFS is empty with a probability 1−α and is distributed
according to a density p with probability α.

features into a single Bayesian filter and does not require
separate DA step nor feature management, as are classically
required [4], [5], [9]. As with the standard Bayes filter,
the above recursion is computationally intractable in gen-
eral. The following section therefore investigates tractable
approximations to the Bayes FB-SLAM filter.

III. THE PHD-SLAM FILTER

Since the full Bayes FB-SLAM filter is numerically
intractable, it is necessary to look for tractable but principled
approximations. The probability hypothesis density (PHD)
approach which propagates the 1st order moment of the
posterior multi-target RFS has proven to be both powerful
and effective in multi-target filtering [16]. However, this
technique cannot be directly applied to FB-SLAM which
propagates the joint posterior density of the map and the
vehicle trajectory. This section derives a recursion that
jointly propagates the posterior PHD of the map and the
posterior density of the vehicle trajectory.

A. The Posterior PHD of the Map

For each closed set S and an RFS M, let the number
of points of M in S be denoted by NS(M). If the mea-
sure E[N(·)(M)] admits a density relative to the Lebesgue
measure λ, then the PHD of an RFS M is the density [18],

v(m) =
E[Ndm(M)]

λ(dm)
. (8)

In other words, the integral of the PHD v over a set S gives
the expected number of points of M that are in S. If the
RFS M is Poisson, i.e. the number of points is Poisson
distributed and the points themselves are independently and
identically distributed, then the probability density of M can
be constructed exactly from the PHD,

p(M) =

∏
m∈M

v(m)

exp(
∫

v(m)dm)
. (9)

In this sense, the PHD can be thought of as a 1st moment
approximation of the probability density of an RFS.

Consider now the joint posterior distribution of the map
and the vehicle trajectory. From standard results on condi-
tional expectation,

E[NS(Mk)|Z0:k, U0:k−1, X0] =
E[E[NS(Mk)|X0:k,Z0:k, U0:k−1]] (10)

Note that the 1st expectation on the RHS of the
above equation is taken over all possible vehicle tra-
jectories up to time k. The conditional expectation
E[N(·)(Mk)|X0:k,Z0:k, U0:k−1] is a measure (on the space
of features) and its density (relative to the Lebesgue mea-
sure) is the posterior PHD of the map conditioned on the
measurement history, the control history and the vehicle
trajectory, i.e.

vk(m|X0:k,Z0:k, U0:k−1) =
E[Ndm(Mk)|X0:k,Z0:k, U0:k−1]

λ(dm)
.

(11)



Similarly, the posterior expectation
E[N(·)(Mk)|Z0:k, U0:k−1, X0] is a measure and its
density is the posterior PHD of the map. Hence, it follows
from (8), (10) and (11) that

vk(m|Z0:k, U0:k−1, X0) = E [vk(m|Z0:k, U0:k−1, X0:k)]
(12)

In otherwords, the posterior PHD of the map is indeed the
expectation of the trajectory-conditioned PHD of the map.

Apart from being a first order approximation of the
posterior density of the map, the posterior PHD plays a
vital role in the map estimation process itself. Given the
joint posterior of the map and the trajectory, an estimate of
vehicle trajectory can be computed by marginalising over
the map to obtain the posterior of the vehicle trajectory and
take the mean. It is well-known that the posterior mean of
the vehicle trajectory is Bayes optimal. While the posterior
density of the map can be obtained by marginalising over the
vehicle trajectory, the expectation of the map is not defined.
Fortunately, a Bayes optimal estimator for the map can be
obtained using the posterior PHD vk(·|Z0:k, U0:k−1, X0) of
the map by integrating the posterior PHD to obtain the
estimated number of features N̂k and then finding the N̂k

highest the local maxima of the posterior PHD [19].

B. The RB PHD-SLAM recursion

Using standard conditional probability, the joint posterior
density of the map and the trajectory can be decomposed as

pk(Mk, X1:k|Z0:k, U0:k−1, X0) =
pk(X1:k|Z0:k, U0:k−1, X0)pk(Mk|Z0:k, X0:k). (13)

Thus, the recursion for the joint map-trajectory posterior
density according to (7) is equivalent to jointly propagating
the posterior density of the map conditioned on the trajectory
and the posterior density of the trajectory. If, as before for
compactness,

pk|k−1(Mk|X0:k) = pk|k−1(Mk|Z0:k−1, X0:k)
pk(Mk|X0:k) = pk(Mk|Z0:k, X0:k)

pk(X1:k) = pk(X1:k|Z0:k, U0:k−1, X0)

then,

pk|k−1(Mk|X0:k) =
∫

fM(Mk|Mk−1, Xk)×
pk−1(Mk−1|X0:k−1)δMk−1 (14)

pk(Mk|X0:k) =
gk(Zk|Mk, Xk)pk|k−1(Mk|X0:k)

gk(Zk|Z0:k−1, X0:k)
(15)

pk(X1:k) = gk(Zk|Z0:k−1, X0:k)×
fX(Xk|Xk−1, Uk−1)pk−1(X1:k−1)

gk(Zk|Z0:k−1)
. (16)

The recursion defined by (14), (15), (16) is similar to
FastSLAM [5], in the exploitation of the factorisation of the
joint SLAM posterior of [20]. The difference is that the map

and the measurements are random finite sets. Consequently,
the propagation equations involve probability density of
random finite sets and marginalisation over the map involves
set integrals.

Abbreviating vk|k−1(m|X0:k) = vk|k−1(m|Z0:k−1, X0:k)
and vk(m|X0:k) = vk(m|Z0:k, X0:k), and following [15],
then eqns.(14), (15) are approximated by propagating the
corresponding PHD,

vk|k−1(m|X0:k) = vk−1(m|X0:k−1) + b(m|Xk)

vk(m|X0:k) = vk|k−1(m|X0:k)
[
1− PD(m|Xk)+

∑

z∈Zk

Λ(m|Xk)
ck(z|Xk) +

∫
Λ(ζ|Xk)vk|k−1(ζ|X0:k)dζ

]
(17)

where Λ(·|Xk) = PD(·|Xk)gk(z|·, Xk), b(m|Xk) is the
PHD of the new feature RFS, B(Xk), discussed previously
in section II-B and,

PD(m|Xk) = the probability of detecting a feature at
m, from vehicle pose Xk.

ck(z|Xk) = PHD of the clutter RFS Ck in eqn.(5)
at time k.

Furthermore, from (9), pk|k−1(Mk|X0:k) and pk(Mk|X0:k)
are approximated by,

pk|k−1(Mk|X0:k) ≈

∏
m∈Mk

vk|k−1(m|X0:k)

exp
(∫

vk|k−1(m|X0:k)dm
)

pk(Mk|X0:k) ≈

∏
m∈Mk

vk(m|X0:k)

exp
(∫

vk(m|X0:k)dm
) .

Subsequently, from the mapping recursion of eqn.(15) and
setting Mk = ∅, it can be shown that the measurement
likelihood in the vehicle trajectory recursion of eqn.(16) can
be evaluated as,

gk(Zk|Z0:k−1, X0:k) =
∏

z∈Zk

ck(z)×

exp
(

N̂k − N̂k|k−1 −
∫

ck(z)dz

)
. (18)

This is an important result, which allows for the likelihood
of the measurement conditioned on the trajectory (but not
the map), to be calculated in closed-form, as opposed to
using approximations [5]. This is exploited in the following
section describing the filter implementation.

IV. FILTER IMPLEMENTATION

Following the description of the proposed RB-PHD-
SLAM filter in the previous section, a Gaussian mix-
ture (GM) PHD filter is used to propagate the trajectory-
conditioned posterior PHD of the map of eqn.(15), while a
particle filter is then used to propagate the posterior density



of the vehicle trajectory of eqn.(16). As such, let the PHD-
SLAM density at time k−1 be represented by a set of L
particles,

{
w

(i)
k−1, X

(i)
0:k−1, v

(i)
k−1(·|X(i)

0:k−1)
}L

i=1

,

where X
(i)
0:k−1 = [X0, X

(i)
1 , X

(i)
2 , . . . , X

(i)
k−1] is the ith hy-

pothesised vehicle trajectory and v
(i)
k−1(·|X(i)

0:k−1) is its map
PHD. The filter then proceeds to approximate the posterior
density by a new set of weighted particles,

{
w

(i)
k , X

(i)
0:k, v

(i)
k (·|X(i)

0:k)
}L

i=1

,

as follows:

A. The Per-particle GM PHD Feature Map

Let the prior map PHD for the ith particle, v
(i)
k−1(·|X(i)

k−1),
be a Gaussian mixture of the form,

vk−1(m|X(i)
k−1) =

J
(i)
k−1∑

j=1

η
(i,j)
k−1N

(
m; µ(i,j)

k−1 , P
(i,j)
k−1

)

which is a mixture of J
(i)
k−1 Gaussians, with η

(i,j)
k−1 , µ

(i,j)
k−1 and

P
(i,j)
k−1 being their corresponding predicted weights, means

and covariances respectively. Let the new feature intensity
for the particle, b(·|Zk−1, X

(i)
k ), from the sampled pose,

X
(i)
k at time k also be a Gaussian mixture of the form,

b(m|Zk−1, X
(i)
k ) =

J
(i)
b,k∑

j=1

η
(i,j)
b,k N (

m; µ(i,j)
b,k , P

(i,j)
b,k

)

where, J
(i)
b,k defines the number of Gaussians in the new

feature intensity at time k and η
(i,j)
b,k , µ

(i,j)
b,k and P

(i,j)
b,k are

the corresponding components. This is analogous to the
proposal distribution in the particle filter and provides an
initial estimate of the new features entering the map.

The predicted intensity is therefore also a Gaussian mix-
ture,

vk|k−1(m|X(i)
k ) =

J
(i)
k|k−1∑

j=1

η
(i,j)
k|k−1N

(
m; µ(i,j)

k|k−1, P
(i,j)
k|k−1

)

which consists of J
(i)
k|k−1 =J

(i)
k−1 +J

(i)
b,k Gaussians represent-

ing the union of the prior map intensity, vk−1(·|X(i)
k−1), and

the proposed new feature intensity. Since the measurement
likelihood is also of Gaussian form, it can be seen from
eqn.(17), that the posterior map PHD, vk(·|X(i)

k ) is then
also a Gaussian mixture given by,

vk(m|X(i)
k ) = vk|k−1(m|X(i)

k )
[
1− PD(m|X(i)

k )+

∑

z∈Zk

J
(i)
k|k−1∑

j=1

v
(i,j)
G,k (z, m|X(i)

k )
]
.

The components of the above equation are given by,

v
(i,j)
G,k (z, m|X(i)

k ) = η
(i,j)
k (z|X(i)

k )N (m; µ(i,j)
k|k , P

(i,j)
k|k )

η
(j)
k (z|X(i)

k ) =
PD(m|X(i)

k )η(i,j)
k|k−1q

(i,j)(z, X
(i)
k )

c(z) +

J
(i)
k|k−1∑

`=1

PD(m|X(i)
k )η(i,`)

k|k−1q
(i,`)(z, X

(i)
k )

where, q(i,j)(z, Xk) = N (
z;Hkµ

(i,j)
k|k−1, S

(i,j)
k

)
. The compo-

nents are obtained from the standard EKF update equations,

µ
(i,j)
k|k = µ

(i,j)
k|k−1 + K

(i,j)
k (z −Hkµ

(i,j)
k|k−1)

P
(i,j)
k|k = [I −K

(i,j)
k ∇Hk]P (i,j)

k|k−1

K
(i,j)
k = P

(i,j)
k|k−1∇HT

k [S(i,j)
k ]−1

S
(i,j)
k = Rk +∇HkP

(i,j)
k|k−1∇HT

k

with ∇Hk being the Jacobian of the measurement equation
with respect to the landmarks estimated location. The clutter
RFS, Ck, is assumed Poisson distributed [2], [6] in number
and uniformly spaced over the mapping region. Therefore
the clutter intensity is given by, c(z) = λcU(z), where
λc is the average number of clutter measurements and
U(·) denotes a uniform distribution on the measurement
space. As with other feature-based GM implementations
[21], pruning and merging operations are required to curb
the explosive growth in the number of Gaussian components
of the posterior map PHD. These operations are carried out
as in [18].

B. The Vehicle Trajectory

The proposed filter adopts a particle approximation of the
posterior vehicle trajectory, pk(X1:k), which is sampled/re-
sampled as follows:

At time k ≥ 1, Step 1: Sampling Step

• For i = 1, ..., L, sample X̃
(i)
k ∼ q(·) and set

w̃
(i)
k =

gk(Zk|Z0:k−1, X̃
(i)
0:k)fX(X̃(i)

k |X(i)
k−1, Uk−1)

q(X̃(i)
k |·)

w
(i)
k−1.

• Normalise weights:
∑L

i=1 w̃
(i)
k = 1.

Step 2: Resampling Step

• Resample
{

w̃
(i)
k , X̃

(i)
0:k

}L

i=1
to get

{
w

(i)
k , X

(i)
0:k

}L

i=1
.

Setting the proposal density to be the vehicle transition
density,

w̃
(i)
k = gk(Zk|Z0:k−1, X̃

(i)
0:k)w(i)

k−1

which can be evaluate in closed form according to eqn.(18),
where,

N̂
(i)
k|k−1 =

J
(i)
k|k−1∑

j=1

η
(i,j)
k|k−1 and N̂

(i)
k =

J
(i)
k∑

j=1

η
(i,j)
k .



The following section presents results and analysis of the
proposed RB-PHD-SLAM filter, and compares to classical
vector-based FastSLAM [5].

V. RESULTS & ANALYSIS

This section details results and analysis from trials carried
out using a simple simulated dataset, depicted in figure 2.
For comparative purposes, the benchmark algorithm used
in the analysis is the FastSLAM [5] algorithm with max-
imum likelihood data association, using mutual exclusion
constraint and a 95% χ2 confidence gate. Both filters use 50
particles to approximate the trajectory density. Nominal pa-
rameters for the trials were: velocity input variance of 0.25,
steering input variance of 9, range measurement variance of
2 and bearing measurement variance of 12.5, PD = 0.95,
λc = 5, using a sensor with 15m maximum range and a 360o

field of view. Measurement noise was inflated to hinder data
association in the vector-based filter. For both filters, the
trajectory of highest weight is chosen as the vehicle path
estimate, with its corresponding map being used to estimate
the features, using an existence threshold of 0.5.
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Fig. 2. The simulated environment showing point features (circles)
and the vehicle trajectory (line). A sample measurement plotted
from the ground truth trajectory is also shown (black points).

Figure 2 shows the simple ground truth trajectory and
map for the trial. A sample result from a single Monte Carlo
(MC) trial is then depicted in figure 3. An improved vehicle
trajectory and feature map estimate is evident. Given that
the RB-PHD-SLAM filter incorporates data association and
feature number uncertainty into its Bayesian recursion, it is
more robust to large sensing error, as it does not rely on hard
measurement-feature assignment decisions. Furthermore, it
jointly estimates the number of features and their locations,
alleviating the need for popular feature management meth-
ods [4], [5].

The positional RMSE over the estimated trajectory for 50
MC trials is presented in figure 4, further demonstrating the
reduced error of the proposed filter.

Given that the feature map is a set, to explicitly quantify
the map estimation error, a mathematically consistent set
error metric [11], [12], [22] can be adopted which jointly
evaluates the error in both feature location and feature
number estimates. The metric optimally assigns each feature
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Fig. 3. Graphical representation of the posterior FB-SLAM
estimate from each filter. The robustness of the proposed approach
in high measurement noise is evident.

0 10 20 30 40 50
0

1

2

3

4

5

6

NN−FastSLAM

RB PHD-SLAM

P
o
si
ti
o
n
al
 R
M
S
E
 (
m
)

MC Trial

Fig. 4. Comparison of the positional RMSE over 50 MC trials in
the simulated environment. In the presence of large data associa-
tion uncertainty and clutter, a marked improvement in trajectory
estimation using the proposed filter is noticeable.

estimate to its ground truth feature through the Hungarian
assignment algorithm and evaluates an error distance, while
penalising for under/over estimating the correct number of
features. Figure 5 plots the map estimation error metric for
each MC trial. The metric mathematically quantifies the
mapping error depicted in figure 3, allowing for the com-
parison of feature map estimates. The results demonstrate
the improved map estimate (both in terms of feature number
and location) from the proposed RB-PHD-SLAM filter under
difficult sensing conditions.
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Fig. 5. Comparison of the feature map estimation error. For
the purpose of evaluating the mapping error, the posterior map
estimate of FastSLAM is ‘interpreted’ as a set.

Figure 6 presents the mean and standard deviation of



the estimated vehicle trajectory’s RMSE over 50 MC trials
carried out at increasing levels of measurement noise. The
merits of the proposed Bayesian SLAM framework and RB-
PHD-SLAM filter are verified, as its encapsulation of data
association and feature/measurement number uncertainty
into a single update (as opposed to the common two-tiered
approach), increases its robustness to situations which may
corrupt data-association reliant approaches.
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Fig. 6. Mean and Standard Deviation of the estimated vehicle
trajectory’s RMSE at increasing levels of measurement noise.

VI. CONCLUSION

This paper presented both a Bayesian recursion and
tractable solution for the feature-based SLAM problem. The
filter jointly propagates and estimates the vehicle trajectory,
number of features in the map as well as their individual
locations in the presence of data association uncertainty and
clutter. The key to the approach is to adopt the natural
finite-set representation of the map and to use the tools
of finite-set-statistics to cast the problem into the Bayesian
paradigm. A Rao-Blackwellised implementation of the filter
was outlined, in which the PHD of the map was propagated
using a Gaussian mixture PHD filter, and a particle filter
propagated the vehicle trajectory density. A closed form
solution for the trajectory weighting was also presented,
alleviating the need for approximation, which is commonly
used. Simulated results demonstrated the robustness of the
proposed filter, particulary in the presence of large data
association uncertainty and clutter.
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