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Abstract—This paper presents an outdoor radar mapping
algorithm, using an occupancy grid approach. It is shown that
the occupancy mapping problem is directly coupled with the
signal detection processing which occurs in a range sensor, and
that the required measurement likelihoods are those commonly
encountered in both the target detection and data association
hypotheses decisions. Furthermore, these measurement likeli-
hoods are highly correlated both with the environment and
the non-linear target detection algorithm used. The classical
binary Bayes filter occupancy grid mapping technique generally
treats the measurement likelihoods as fully known deterministic
values, whereas they are in fact estimated likelihoods which are
dependant mainly on the feature’s signal-to-noise ratio.

In this paper, contrary to standard sensor models, the
measurement likelihoods are therefore treated as random states
which must be recursively filtered for each region of the map,
and are not unknown intrinsic sensor parameters which can
be learned from training data. As the measurement likelihoods
do not provide direct measurements of the state of interest
(the occupancy random variable), but are required to generate
the estimate, maximum likelihood estimates of the unknown
measurement likelihoods are used to generate an estimate on
the state of the map at each update. The ideas presented in this
paper are demonstrated in the field robotics domain using a
millimeter wave radar sensor.

Index Terms— Radar target detection, Occupancy grid, Mea-
surement likelihoods

I. INTRODUCTION

it is typical in the case of most sensor models to assume
empty space up to range[1]. This signal may or may not
correspond to a target, depending on the environmental prop-
erties. These ambiguities are typically resolved in the data
association stage by applying a threshold to some statistical
distance metric based on the covariance of the predicted and
observed feature locations.

Sensor noise in range/bearing measuring sensors however is
in fact 3 dimensional, since an added uncertainty exists in the
detection process itself. Whilst this observation is considered
in such mapping techniques as occupancy grids [2], most
localisation algorithms will disregard this probability and as-
sume an ideal detector. Using this assumption, the distribution
of the target coordinates can be conveniently modeled with
probability density functions (typically Gaussian), where the
probabilistic sum under the distribution is unity. That is,
complete certainty is assumed that a target existaewhere
within that area, thus readily allowing for numerous stochastic
filtering techniques to be applied. For most occupancy grid
maps, the occupancy is distributed in a Gaussian manner as
a function of the range returned, the intensity of the returned
signal is rarely considered, resulting diiscreteobservations
of occupancy in each cell. The binary Bayes filter is then used
as a solution, which is possible as it subtly uses a completely
known occupancy measurement model to update the posterior

Autonomous outdoor navigation is still a very active topic gccupancy probability.
of research due to the presence of unstructured objects and

rough terrain in realistic situations. One of the core reason . o
g aetectmn parameters, however this is not the case for sensors

for fa|.lur.e is the difficulty in the conS|ster_1t detectpn and ﬁuch as the Frequency Modulated Continuous Wave (FMCW)
association of unstructured targets present in the environment.

Mobile robot navigation is typically formulated as a dynamic radat and certain underwater sonar devices where the output

L . . data is a complete signal power profile along the direction
state estimation process where predicted vehicle and targe - : ; - :
beam projection, without any signal detection being per-

locations are fused with sensor readings. Reliable targeg : ;
! . L rmed. At each range bin, a power value is returned thus
detection from noisy sensor data is critical to the successfu

. giving information at multiple ranges for a single bearing
convergence of any such algorithm. ; .
. . angle. FMCW radar sensors are typically applied to outdoor
Most methods are concerned only in the location of de- ; o :
oo . . .~ ~sensing applications as they can operate in hazardous outdoor
tected targets, thus the noise in the sensor readings is typlcaIB/ ; o .
. : B : - environments where other sensors will fail. This is due to the
2 dimensional i.e. in range and bearing. For range/bearlnga ) " :
. hage dar’s ability to penetrate dust, fog, and rain [3].
sensors commonly used in robot navigation, such as the
polaroid sonar or SICK laser, the target detection algorithm
i rformed internally resulting in in
‘:’] pfe. 0 . ed | te ‘f"dy ngt 9 d aNS g(:’ 9). ofUIpUt 'tO . 1Due to the modulating techniques, a Fast Fourier Transform can be used
the first signal considered detected. No _Ot er information ISy, retym a power value at discrete range steps. Range resolution, beamwidth,
returned about the world along the bearing arfgjléowever  and maximum range are dependant on the particular sensor.

For most sensors, users do not have access to the signal



1. RELATED WORK occupancy variable measurement likelihood can be used when

ignal detection theory is considered. The problems with a

In rugged outdoor or underwater environments where ther ! B filt Ut Iso di 4. Section IV
can be numerous false alarms (incorrectly declared feature nary bayes TIlter solution are aiso discussed. section
presents the problem formulation while section V discusses

and/or outliers (features which are “infrequently” observed), . ) . ) .
so called “feature management” techniques are often used f particle filter solution to the recursion. Section VI then
identify “unreliable” features and delete them from the map_presents some results of the proposed method using real

This is in order to reduce the possibility of false data associfadar data collected from outdoor field experiments and

ation hypothesis decisions. From the literature, two Commoﬁomparlsons% a(;e made to a ground truth generated by SICK
methods of identifying true features from noisy measurementgaser range finders.

is by using the binary Bayes filter [4], [5], which propagate a 1. OCCUPANCY GRID MAPPING

feature existence variable obtained from a sensor model and ) o )

the “geometric feature track quality” measure [6], [7] which is Occupancy grid mapping 1S generally solved by assuming

a function of the innovation for that feature. The binary BayesS2¢h 9rid cell to be independent so that the occupancy variable

filter approach is more commonly used in an occupancy gridn each gell can |n.dependently gstlmated [2]. The mdepgndent

framework for map building applications. state of interest in each cell is regarded as being discrete
Signal processing problems are not new to the field oiwhere,

autonomous mapping and target detection but are generally Z X =1 (1)

treated in a simplified manner. In the underwater domain, Xeo

sonars also return a power versus range vector which i$he set ® can consist of an arbitrary number of

difficult to interpret. In his thesis [8], S. Williams outlined a hypotheses but usually containgOccupied, Empty}

simple target detection technique for autonomous navigatioin the case of a binary Bayesian approach [5] and

in a coral reef environment. A constant noise power threshold Occupied, Empty, Unknown} in the case of a Dempster-

is used and the maximum signal to noise ratio is chosen as tHghafer approach [12]. As seen in [5], the ‘inverse’ Bayesian

point target. Clearly this method of extraction results in a largeapproach recursively estimates the probability of each

loss of information, which is not desirable for the constructionhypothesis using the computationally efficient log-odds

of well defined maps. S. Majumder attempts to overcomeapproach,

this loss by fitting a sum of Gaussian probability density .

function to the raw sensor data [9], however this represents a |og Pm|z') _ P(m|z)

likelihood distribution in range of aingle point targetvhich 1 — P(m|z") 1 — P(m|z)

is misleading as the data can contain multiple targets, leading o 1—P(m) o P(m|zt=1)

to the association of non-corresponding points. & P(m) 81= P(m|zt—1)
In field robotics, standard noise power thresholdimgs where m denotes the hypothesi¥ — Occupied and z'

again used by S. Clark [10] using an FMCW radar. The range . .

represents a history of range measurements up to tiate

and bearing measurements of the detected point were thery. ;
g P thICh the sensor hypothesized the presence of a landmark.

propagated through an Extended Kalman Filter framework_, .~ ) .

to perform navigation and mapping. The method was showlr;::;;S Is referred to as the inverse ”?Ode”a@” |2) inversely
: : o ps from the measurement at tirheéo the state. Inverse

to work in an environment containing a small number of

well separated, highly reflective beacons. The method was et odels are also required by Dempsters update rule,

(2)

tended slightly in [11] wheregven bounce specularitiegere S mep(Xy)mpn (Xoa)
used to extract pose invariant features. Again the environment m(Xs) = XinXo=Xs ) (3)
contained reflective, metallic containers. L= > mp(X1)mm(X2)

This paper further explores the problem of signal detection XinXe=0

within a robotics framework to perform mapping. It is shown Heremy(-) andm,,(-) representnass functionsespectively
that by using signal detection theory, the occupancy randormontaining the sensor and prior evidences in support of each
variable has an exact (but unknown) measurement likelihoodiypothesis,{ X, X2, X3} C X. That is, a direct mapping
Furthermore, it is shown that the binary Bayes filter is nofrom the sensor measurement to the evidence in support of
longer applicable to the propagation of this variable, asach hypothesis. However, this approach requires ‘intuitive’
the measurement likelihood itself is not deterministic. Amodels as it is contrary to the way in which the sensor
new particle filter based method is therefore developed t@perates. This may result in inconsistent maps as shown in
estimate the posterior distribution of the occupancy variablg5].
and perform map building. Approaches using the ‘forward’ sensor modé&l(z;|m),

The paper is organized as follows: Section Il outlinesare also proposed [13]. Using the standard conditional in-
the general occupancy grid problem, showing how the exadlependence assumptions the occupancy posterior can be ob-

tained from,

2Fixed threshold detection is indeed the optimal detector in the case of 1
spatially uncorrelated and homogenous noise distributions of known mean. P(m|Z') = vP(z;|m)P(m|z"~1) 4)



where~ is the normalizing constant. Sensor modgtatially ~ where m denotes occupancy angk denotes emptiness in
distribute the measurement likelihood about the detected given grid cell. These equations calculate in closed form
range,d, typically using Gaussian spread functions with thea statistically correct posterior of the occupancy random
sensor range covarianee?. In the case of a 1D measurement, variable, where the measurement likelihodd&:; = D|m),
P(zz = D|m), P(zx = D|m) and P(2, = D|m) are
p(ze|m) = \/—26 207 (5)  those frequently encountered in target detection algorithms.
2na A graphical representation of the target detection hypothesis
Note in this model, the measurementis a range reading. s shown in figure 1. Herey(z|m) andp(z|m) represent the
The range at which a sensor reports the presence of @ceived signal fluctuation densities under both target present,

landmark can be used in the fllterlng of lecation estimate. m, and target abserm' situations respective|y and are further

However, whilst this may be correlated with the sensor'sgiscussed in section V-A.

ability to correctly detect the landmark, the reported range at

which the landmark is hypothesised to exist does not provide a p(x|m)

measurement of the occupancy random variable. Therefore in

the context of occupancy variable filtering the measurement,

z¢, should not be a range reading but should in fact be the sen-

sor’s output hypothesis decision on the presence or absence of

a landmark. That is, the measurement space should be rede-

fined asz;, € {Detection, No Detection}. As a result of this _ ;

subtlety, previous occupancy sensor models typically assumePZ P o e Hoo><——Deside i, Signal Amplitude

complete knowledge of the sensors’ detection characteristics -

(probabilities of detection and false alarm), and the occupancy,y 1 A graphical representation of the received signal classifi-

measurements become deterministic. The signal processingtion problem. T represents the decision threshplds the mean

and measurement intensity information that may be availablejoise power andS is the mean target signal-to-noise ratio. The

are usually ignored. Consequently, this assumption allows fopyPothesis decisions ad,: Target absent, andf,: Target present.

each cell to contain a deterministic occupancy measuremepro%argﬁ?;%rfecﬂi%gﬁg&h:rzdglsrg?#éﬁigtég. calculate the posterior

which can be updated using the binary log-odds equation (or

Dempsters equation in the case of evidential measurements).

This is in contrast to the location measurements which are The four probabilities present in the detection hypothesis

stochastically modeled and propagated. problem, which are also required by equations 7 and 9, are
typically referred to as,

Probability

p(z(=D|m)

p(z=D|m)

A. Occupancy Mapping from Detection Space

Once the occupancy measurement, is defined in de- P(z = D|m) — Probability of Target Detection
tection space rather than polar space, the measurement like- P(z; = D|m)
lihoods (for both detection and non-detection) become real  p(;, = D|m) — Probability of Missed Detection
signal processing parameters. A simple expansion of eqn Im)
4 shows how the occupancy measurement likelihoods can (
be obtained when the signal processing stage is considered. te thatm, can always be updated, given a detection, or no

Consider the probability of occupancy given a history of yetection hypothesis. These likelihoods can generally only be
measurements, . calculated exactly when twa priori assumptions are made,
P(m|z"). that is - aknown mean target signal to noise ratio (SNR),
The measurement historg can now be considered as a and known target power flgctuatior! likelihood. Under_ the
set of hypothesis decisions on the presence or absence fyyrther assumption of |Qentlcal and mdependent!y distributed
a target (derived through some function of the measured!!D) noise power (again of known mean), a suitable power
signal intensity) given by the measurement model. Thus eactreshold can be calculated which will exactly obtain the the-
measurement;, can be denoted aP if a detection was oretlgally derived detegtlon (and.hence occupancy) I|kel|hooq.
made, orD if no detection was made. We can then expandn this case, observations required to calculate the posterior

about both measurement hypotheses to get, occupancy probability,P(m|z"), become deterministic and
thus the standard deterministic update of egn 4 is valid.

P(m|zy = D,Z7") = 45 ' P(z = DIm)P(m|Z"~")  (7)  However, when these assumptions are relaxed (the strongest
vp = P(z = Dlm)P(m|2'~') + P(2, = D|m)P(m|zZ' ") being the known SNR assumption), the above measurement
(8) likelihoods become estimated properties and thus the propa-
_ P =1y _ -1 _F t—1 gation of the occupancy random variable must be carried out
Plmlz = D,z )= ’th, f(zt R D|m){3(m|z ) , 59) using stochastic filtering methods (EKF, Particle Filter, ...) as
7p = Pz = Dim)P(m|z"") + P(z = Dlm)P(m|z"") opposed to a binary filter. As the measurement likelihoods
(10)  are two complimentary set§$,P(z; = D|m), P(z; = D|m)}



and {P(z; = D|m), P(z; = D|m)}, we only need estimate B. Mapping Algorithm Overview

one likelihood from each set. Figure 3 shows a block diagram of the estimation problem

Furthermore a binary filter apprpach will equally we|_ght under consideration. The system input is the true occupancy
both the measurement and the prior, as they are considere o : S
. State,m, which is a vector of K binary numbers indicating the
to have equal covariances. Occupancy measurements are In . ; ;
. : . . presence or absence of a target in the environment, in each
fact highly correlated with the vehicle location, and should . . RR

not be treated equally. For example, specular reflections armc the K range bins. The corresponding SNR, for each
likely to occur atqhi hy.an les of irr:ciéjer?ces and clutter freet%rget are also required. The sensor model block then uses
y g 9 ' the targets range, SNR(sx|my; = 1) and p(sx|my = 0) V

observations should be treated with greater confidence thai?to enerate a raw noisy power-range spectrsifiyf), of
those with interfering signals. figure?z yp ge sp '

IV. PROBLEM FORMULATION

This section outlines the proposed system to jointly esti- Nciise S(M)
mate both the occupancy random variable and the measure- M
ment likelihoods. ©

A. Data Format : 0

/\7l<—-| Bayes Filter |<4L*—|CFAR Detector|<—

—— > {Sensor Model

From a radar perspective, the environment can be consid- Lo
ered to consist of an unknown number of spatially distributed @ < T ‘\9/’ MLE
signal probability density functions (pdf) of both unknown y

distribution with unknown moments. A single sensor sweepi 3 A block diagram of the pronosed aldorithm. The aim is to
therefore acquires samples frc_)m these underlying env'rorgs?timate the poste?ior on the opccgpancy v%ctor, M. This however
mental pdfs and returns them in the form of a power-ranggeqyires estimates of the measurement likeliho®dsy represents
spectrum at each bearing angle. A sample of such a spectruffie measurements used in the Bayes filter.

collected from an outdoor field test, can be seen in figure

2. This spectrum, therefore contains a single signal sample

at each theK discrete range increments from the sensorc. constant False Alarm Rate (CFAR) Detector

for a given bearing angle. Each range at which a signal . ) . ) ) ]
sample is acquired by the sensor is referred to aange This block contains the signal detection algorithm which

bin. To model such data, assumptions are typically madd@s constant false alarm rate property. Its input the a single

power-range spectrum, and its output, is a vector of K
binary numbers indicating the detection, or non-detection. A
ol /Targets\ Mjlti—path |
s 1 D. Measurement Likelihood Estimator (MLE)

more in-depth explanation of this block can be seen in [14].

This block provides estimates d@bth measurement like-
lihoods, 6, and 6¢,. They are estimated by assuming both
m, = 1 andmy = 0 respectivelyy k € {1,...,K}. 6,4
sy / requires estimates @t for each range bin. This will be further

1 discussed in section V-A.

Power (dB)

Clutter free noise

o 50 100 150 200

Range (m) E. Bayes Filter

Fig. 2. A sample spectrum, from a frequency modulated continuous The problem is therefore to evaluate the joint likelihood on

wave radar, containing K (assumed independent) signal measurehe occupancy and measurement likelihood random variables
ments,sy, at K range bins for a single sensor bearing angle. at each time,

t
on the signal distributions under both target presence and p(ms, Oly’) (11)

absence hypotheses. L#t)/) represent a single power-range yhere the measurement, consists a history of all measure-
spectrum, withp (s, |2, my,) being the target presence signal ments Jikelihoods©, which have been selected given the
pdf andp(sy|$2, ) being the target absence (noise) signalpistory of binary detection hypotheses.. Note thatm, now

pdf, in the &y, range bin.€2, and 2, are the unknown ronrecents the occupancy estimate an arbitraryrjnat time
distribution moments. The noise pdf is assumed Nk € ; ag explained in the previous section, only two measurement
{1,..., K}, and the moments gf(s;|m), = 1) are a function i alihoods are required, thus

of the target's mean SNRR. The spatial distribution are

typically modeled by point spread Gaussian functions using o, — 04

the sensor’s range and bearing covariances. = { Ota ]



with 6, being the detection measurement likelihood &gl p(sk|Qm, mi) and p(sg|Qm, M) VE € {1...K}, where
being the false alarm likelihood. Using Bayes rule to expandhe distribution moment§?,, and(2,;, are generally assumed
(11) we get, unknown and must be estimated using the signal intensity
" information.
p(my, Oly") o< p(ye|my, ©:)p(me, Olmy—1,0;-1). (12) 1) The False Alarm Likelihood Measuremeriven the
Assuming independence between the components of the me@istribution p(sy[m,my) Vk € {1...K} with known

surement likelihood we get, Q.5, an optimal detection thresholfi,, calculated through a
R function of(2; can be derived to obtain a constany. In the
p(yelme, ©1) = p(Z|my, ©1)p(O¢[my, ©:).  (13)  case ofunknown(,,, with certain distribution assumptions
and as bothZ, andm;, are binary, (Exponential, Rayleigh, Weibull, K-distributed), an adaptive
T which is independent of the unknown parametéexs
p(Z =1my =1,0;) = by can be obtained and a constaft, maintained. Therefore,
p(Z =0/m; =1,0;) =1— 04 constant false alarm rate (CFAR) detectors maintain the pre-
p(Z = 1m; = 0,0,) = 04 defined false alarm likelihooddy,, if the K consecutive

intensity measurements are [ID samples frp(w|Qm, m)

p(Z =0lm; =0,8¢) =1—0ya. k € {1...K}, and more importantlygiven that the distri-

Also a static process model implies, bution assumption omp(s|Q2;,m), is valid The density of
- equation?? will thus become deterministic.
p(me, Olmy—1,04-1) = p(my—1,0: 1y ). (14) 2) The Detection Likelihood Measuremefib make an es-

The measurement likelihoods; andé;,, remain unknown timate off,, we must first estimate the targets mean SRR,
- Taking the measured intensity in bin{s|m}, as the signal

quantities. Note that both the likelihoods and the map state,“"™" ) .
m, are constrained to exist within the bounded linfiisl].  + NCiS€ measurement (assuming the existence of a target),

The following section therefore presents a particle filter'Ve must therefore estimate the local noise intensity at that
solution to the proposed problem bin to generate an SNR estimate. Using leading and lagging

windows, N intensity measurements are used to generate this
V. PARTICLE FILTER IMPLEMENTATION estimate. From the signal detection literature [16], there are

This section outlines the formulation for the filtering of Numerous adaptive methods of generating local estimates of
an occupancy random variable using the signal intensityn€ unknown noise distribution parameters. Whilst most signal
information from a measurement. The objective of this filter isProcessing literature considers the probability of detection for

to propagate the posterior density of the occupancy variabldargets of known SNR, this work requirég to be estimated
p(me, ©y)y"). Assuming the priorp(m;_1,©,_1|y'~!) to be  from the measured intensity information using an assumed

represented by a set of partic'@s;{_l’ wé—l}' distl’ibut_ion p(s\ﬂm,m), but with an unkr]OV\{nmea_n SNR
Thus, given an estimate of the local noise intensity in lin

N 7] 1 .
: sk|m}, generated by the detectdt; can be estimated as,
p(mtfla ®t71|yt_1) = Z wg—)l(sxgb_)l (mt—l, @tfl). (15) { k‘ } g Yy i

i=1 5 {sklm} — {sklm}
Ry = - . (16)
As we have na priori knowledge, we assume the measure- {sklm}
ment likelihoods as uniformly distributed, An ordered-statistics approach [17], which is adopted in

this work, has been shown to be most robust in situations
0a=U(0,1) of high clutter and multi-target situations, as is commonly
Oy = U(0,1) encountered in a field robotics environment. Under certain
distribution assumptions, using an ordered statistic noise
estimate, closed form solutions exist @y,

T’“{Sk|m})_N (17)

and the prior on the map agm) = 0.5.

A. Measurement Model

This section outlines the derivation of both measurement a = (1 + 1R
likelihoods, p(z; = D|m) and p(z; = Dl|in), which are ¥
commonly referred to as the ‘probability of detectiofi;
and ‘probability of false alarm'f;,. 8, is a function of
the estimatedmean target SNRR, an assumed target SNR
fluctuation modelp(R|R), as well as the detection threshold, 1 Rs
T. Py, is generally a constant design parameter. As discussepl(s|Q,,, = {u, R}, m) = — exp ((—s/p) + R)) 1o <2\/>>
previously in section IV-A, the measurement datgi/) H H
i; assumed to .consist of a _vector. of K consecutive (i”p(%@) _ @exp(—&ﬁ/%).
time or range) independent signal intensity measurements,
sk, for each bearing angle, shown previously in figure 2. Thus, approximating each estimate as a Gaussian random
A priori signal distribution assumptions are made on bothvariable, we can generate a Gaussian distributed estimate of

with,

P51 = ) = %exp(—é’/u)



6. Given an estimateS;, of the mean SNR in range bi Prior

we can estimate the measurement likelihood, which is then RS
sampled during the occupancy measurement update as seen ©°°f =
in equation??. @ 08
§0,7—¢: L
VI. EXPERIMENTS B ool i e P i e
. ke ,}'#M L '?"tu:l,‘n Lih gt BE A gt bl iy

A log odds model is dependant on the order of the Eo.sf}.“u‘_ﬂ. ! .ﬁyﬂm \1-,f oy gt
measurements DDDDD = OA,.\’};‘{?]’.,{f',|{'f "!"., l}n SaRLL Y‘ e

In this section the proposed filter is analyzed using real % oa i i E
data collected from a 77GHz FMCW radar in an outdoor & |}
environment. The first example propagates an existence vari-  ,,| !
able in each range bin of the radar (K = 800) at a single i

bearing angle. A sample spectrum from this data was shown Range (m)
previously in figure 2. It is assumed that there are three

reflections present in the data, two from targets and on€ig. 4. The uniform a priori occupancy samples at each range bin
from multipath effects. As shown in figure 4, with @  Wwith the mean (dashed) plotted

priori information available, the variables are initialized with

a uniform distribution. In this exampl®&,. and NV; (as seen in
equation?and??) are chosen to be 20. An ordered statistics 1
approach is used to generate a local estimate of the noise level 45
in each range bin, a leading and lagging window width of 20
bins, with 2 guard cells at each side of the cell-under-test.
Using a swerling | fluctuation assumption [15], andPg,

of 1076, the mean and variance of the detection probability
can be estimated according to equation 17 for every range
bin, prior to the target presence hypothesis decision. Once the
hypothesisHy : m or Hy : m, is made at each range bin, the
measurement likelihoodg(z; = D|m) and p(z; = D|m) T .

can be defined. Samples from these densities are shown ! L::_E‘}. 0o Yo ::,
in figure 5. Note in this most conservative measurement 0 50 Ranéoeo(m) 150 200
likelihood, every range bin is treated independently. That is,

for each time step, each peak in the data (under both null ¢y 5 The measurement samples based on the estimated probability
and alternate hypotheses), is treated as a potential targef detection and the output hypothesis of the detector. Samples
and no model of the sensor beam propagation propertiespresent particle approximations pfz; = D|m) or p(z: = D|m),

is assumed. Mixing these samples with the prior sample the case off; and H, hypotheses respectively. Larger spreads of
and resampling according to equatioP® - ??, we get the particles indicate increased uncertainty in that cell. The dashed plot

. . . . . represents the mean value Bf, in each range bin, independent of
posterior density samples in each range bin as seen in figure ﬁ’e detection hypothesis, thus accommodating for potential missed
with an associated variance seen in figure 7. Large uncertain®etections.
exists in regions of missed detections as there is in adequate
information to distinguish between empty space or a missed

detection. Figures 8 and 9 shows the same corresponding plots P_OS.te”or‘.S?f“p'e? i

Measurement Samples
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after 5 iterations. It can be seen that the variance remains | - A -"If:-".'ﬁ'.}. !
practically zero for most cells however due to high variance ol - NE e ik
SNR estimates, particulary at 5m and 150m, there remains & oLt 31 ::; )
some uncertainty in the existence estimate. From this plot it ‘2 0'671 : |:-:.':~. ::.-5 L :
can be seen that the filter is most certain of target presence i | I ,__:} T (TR i
at approximately 135m, as the existence estimate is close to = | il SRt AR A
unity and its associated variance is close to zero. 2 ) | I}H (At |
The second experiment was conducted in an outdoor £ °°[ | ;:'t l}” {I:::gg" : "irH' 1
carpark within the university_ campus. A picture showing Zj i{ L B ,“,}E::a,”H::E: F,.i!.hu{".%}{'*tli'v'i
an overview of the carpark is seen in fig 11. Due to the i | f}:.: u':.:~ b mj"h, Hf.l:ug i\ ':r:' q? .‘ .
difficulty in getting an accurate “ground truth” for outdoor O T g 00 50 200

Range (m)

occupancy grid mapping algorithms, a comparison map was

constructed from two back-to-back LMS SICK laser sensors, . . . . G
Fig. 6. The posterior existence samples after a single filter iteration,

as shown in figure 12. A picture of the vehicle ‘Johnny 5’ it the dashed line representing the mean occupancy in each bin.
is shown in figure 10. With built-up surroundings, the GPS



Posterior variance

o 50 100 150 200
Range (m)

LMS SICK Sensc‘>rs

Fig. 7. Variance of the posterior occupancy samples, in each range
bin k, after a single filter iteration. Fig. 10. Test platform ‘Johnny 5'.

data acquired was not accurate to determine ground truth
Posterior Samples location. As the laser scans frequently obtained returns from
the ground, automatic matching techniques failed. Thus the
consecutive laser scans were manually matched to determine
the true location of the vehicle at each update.

The environment contains numerous objects of varying
dimensions with fluctuating probabilities of detection. In this
environment, missed detections of small targets such as lamp
posts and trees are common. Although a Log-Odds update,
such as that seen in [18], presents a computationally simplistic
approach, its range[(; oc]) makes it susceptible to high
amplitude false alarms. Furthermore, there is no context of

5 =5 o5 I 500 “uncertainty” for such a filter, thus all detections are equally

Range (m) trusted and scaled according to the same measurement model.

Fig. 8. The posterior occupancy samples, after five filter iterations Figure?? shows the resulting maps based on the standard log-
wi%h the das%ed line againprepr)ésentigg the mean existence in ea’c?ldds .|mplem.e n_tatlon, Wl.t h all occupancy estimates treated
bin. as being statistically equivalent. Figures 13 and 14 show the
expected value of the existence variables on the same map

along with their associated variances. Again low variance
estimates can be extracted in regions of unbiased SNR es-
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oas Posterior variance timates, which occur mostly in regions of low clutter. When
a feature is present within some clutter (perhaps a bush) an
oal i increased uncertainty is present in the existence estimate.
Finally figure 15 shows a cross section through the map,
0.08f 1 plotting the existence estimate along with its 2 sigma bounds.
008l | A. Actual Probability of False Alarm

Can use an evidential approach, measure pdf deviation from
the assumed..or add a noise to the estimate. Has a large affect
on the calculated occupancy posterior.

0.02

y l. VII. CONCLUSION
NN

° 5 Range (m) 1e0 200 This paper presented an alternate method of tracking a

features “quality” by considering the sensor signal processing.
Fig. 9. Variance of the posterior occupancy samples, after five filterlt showed that the measurement likelihood typically used
iterations.. The filter is most cerffain of landmark e.xistence at 135min occupancy grid algorithms should in fact be modeled as
as there is low variance on a high occupancy estimate. a density function as opposed to a deterministic function,
which is normally the case. By examining the measurement
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Fig. 11. Overview of testing ground for comparison with the radar Fig. 13. A plot of the mean existence value on the map. The model
generated maps for figureéz? and 13 (Cars were absent at time of considered missed detections of objects with low radar cross section

scan). unlike that of the log odds model.
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Fig. 12. The corresponding laser map for the carpark environmentrig. 14. A plot of the variance of the occupancy estimates. This
shown in figure 11. allows us to statistically quantify the occupancy estimates on the
map which is not considered in previous methods.

model and using signal detection theory, it is shown that

the existence random variable can be calculated in closediscrete Bayes filter. The resulting set of posterior particles
form without the need of heuristic models. However, theis then resampled and the particle count is reduced to the
measurement likelihood used in the existence calculation isriginal number. By virtue of the static state assumption, these
in itself an estimated entity, and is thus modeled by a densitparticles then represent the prior distribution for the following
function rather than a discrete variable. The standard discreiteration.

Bayes estimation framework therefore no longer applies to This concept was demonstrated for a MMWR sensor which
the occupancy grid problem and a particle filter approach igs typically used in an outdoor environment. The sensor
proposed. Using discrete Bayes solutions for each particlgives access to unprocessed range data, allowing for custom
with random samples from the measurement likelihood, deature detectors to be developed. The framework then allows
particle set representing the posterior existence can be gefer the accurate assignment of map existence probabilities,
erated. Weights for these posterior particles are also obtaindttespective of the hypothesis chosen by the detector.

by propagating prior and measurement weights through the However, significant work needs to be carried out to
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Fig. 15. A cross section through the map showing the estimat 16]
occupancy with 2 sigma bounds. For illustration purposes the bound

are

not cropped at the variable bounded limits of 0 and 1.

accurately estimat#, in regions of the map which deviate
from the homogenous exponential assumption. Since for most
practical scenario$’; > Pj,, any Bayesian based mapping

method will assign almost unity existence to any detection.
However, when the assumption on the noise distribution
is violated andPy, deviates from its theoretical value, an

evidential method should be applied as there would be large
uncertainty as to the true false alarm probability. This would
further improve the mapping accuracy. Further work also
would integrate three dimensional uncertainties (in Euclidean
location as well as existence) into data association decisions
and SLAM algorithms.
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