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Abstract— This paper presents an outdoor radar mapping
algorithm, using an occupancy grid approach. It is shown that
the occupancy mapping problem is directly coupled with the
signal detection processing which occurs in a range sensor, and
that the required measurement likelihoods are those commonly
encountered in both the target detection and data association
hypotheses decisions. Furthermore, these measurement likeli-
hoods are highly correlated both with the environment and
the non-linear target detection algorithm used. The classical
binary Bayes filter occupancy grid mapping technique generally
treats the measurement likelihoods as fully known deterministic
values, whereas they are in fact estimated likelihoods which are
dependant mainly on the feature’s signal-to-noise ratio.

In this paper, contrary to standard sensor models, the
measurement likelihoods are therefore treated as random states
which must be recursively filtered for each region of the map,
and are not unknown intrinsic sensor parameters which can
be learned from training data. As the measurement likelihoods
do not provide direct measurements of the state of interest
(the occupancy random variable), but are required to generate
the estimate, maximum likelihood estimates of the unknown
measurement likelihoods are used to generate an estimate on
the state of the map at each update. The ideas presented in this
paper are demonstrated in the field robotics domain using a
millimeter wave radar sensor.

Index Terms— Radar target detection, Occupancy grid, Mea-
surement likelihoods

I. I NTRODUCTION

Autonomous outdoor navigation is still a very active topic
of research due to the presence of unstructured objects and
rough terrain in realistic situations. One of the core reasons
for failure is the difficulty in the consistent detection and
association of unstructured targets present in the environment.
Mobile robot navigation is typically formulated as a dynamic
state estimation process where predicted vehicle and target
locations are fused with sensor readings. Reliable target
detection from noisy sensor data is critical to the successful
convergence of any such algorithm.

Most methods are concerned only in the location of de-
tected targets, thus the noise in the sensor readings is typically
2 dimensional i.e. in range and bearing. For range/bearing
sensors commonly used in robot navigation, such as the
polaroid sonar or SICK laser, the target detection algorithm
is performed internally resulting in a single(r, θ) output to
the first signal considered detected. No other information is
returned about the world along the bearing angleθ, however

it is typical in the case of most sensor models to assume
empty space up to ranger [1]. This signal may or may not
correspond to a target, depending on the environmental prop-
erties. These ambiguities are typically resolved in the data
association stage by applying a threshold to some statistical
distance metric based on the covariance of the predicted and
observed feature locations.

Sensor noise in range/bearing measuring sensors however is
in fact 3 dimensional, since an added uncertainty exists in the
detection process itself. Whilst this observation is considered
in such mapping techniques as occupancy grids [2], most
localisation algorithms will disregard this probability and as-
sume an ideal detector. Using this assumption, the distribution
of the target coordinates can be conveniently modeled with
probability density functions (typically Gaussian), where the
probabilistic sum under the distribution is unity. That is,
complete certainty is assumed that a target existssomewhere
within that area, thus readily allowing for numerous stochastic
filtering techniques to be applied. For most occupancy grid
maps, the occupancy is distributed in a Gaussian manner as
a function of the range returned, the intensity of the returned
signal is rarely considered, resulting indiscreteobservations
of occupancy in each cell. The binary Bayes filter is then used
as a solution, which is possible as it subtly uses a completely
known occupancy measurement model to update the posterior
occupancy probability.

For most sensors, users do not have access to the signal
detection parameters, however this is not the case for sensors
such as the Frequency Modulated Continuous Wave (FMCW)
radar1 and certain underwater sonar devices where the output
data is a complete signal power profile along the direction
of beam projection, without any signal detection being per-
formed. At each range bin, a power value is returned thus
giving information at multiple ranges for a single bearing
angle. FMCW radar sensors are typically applied to outdoor
sensing applications as they can operate in hazardous outdoor
environments where other sensors will fail. This is due to the
radar’s ability to penetrate dust, fog, and rain [3].

1Due to the modulating techniques, a Fast Fourier Transform can be used
to return a power value at discrete range steps. Range resolution, beamwidth,
and maximum range are dependant on the particular sensor.



II. RELATED WORK

In rugged outdoor or underwater environments where there
can be numerous false alarms (incorrectly declared features)
and/or outliers (features which are “infrequently” observed),
so called “feature management” techniques are often used to
identify “unreliable” features and delete them from the map.
This is in order to reduce the possibility of false data associ-
ation hypothesis decisions. From the literature, two common
methods of identifying true features from noisy measurements
is by using the binary Bayes filter [4], [5], which propagate a
feature existence variable obtained from a sensor model and
the “geometric feature track quality” measure [6], [7] which is
a function of the innovation for that feature. The binary Bayes
filter approach is more commonly used in an occupancy grid
framework for map building applications.

Signal processing problems are not new to the field of
autonomous mapping and target detection but are generally
treated in a simplified manner. In the underwater domain,
sonars also return a power versus range vector which is
difficult to interpret. In his thesis [8], S. Williams outlined a
simple target detection technique for autonomous navigation
in a coral reef environment. A constant noise power threshold
is used and the maximum signal to noise ratio is chosen as the
point target. Clearly this method of extraction results in a large
loss of information, which is not desirable for the construction
of well defined maps. S. Majumder attempts to overcome
this loss by fitting a sum of Gaussian probability density
function to the raw sensor data [9], however this represents a
likelihood distribution in range of asingle point targetwhich
is misleading as the data can contain multiple targets, leading
to the association of non-corresponding points.

In field robotics, standard noise power thresholding2 was
again used by S. Clark [10] using an FMCW radar. The range
and bearing measurements of the detected point were then
propagated through an Extended Kalman Filter framework
to perform navigation and mapping. The method was shown
to work in an environment containing a small number of
well separated, highly reflective beacons. The method was ex-
tended slightly in [11] where,even bounce specularitieswere
used to extract pose invariant features. Again the environment
contained reflective, metallic containers.

This paper further explores the problem of signal detection
within a robotics framework to perform mapping. It is shown
that by using signal detection theory, the occupancy random
variable has an exact (but unknown) measurement likelihood.
Furthermore, it is shown that the binary Bayes filter is no
longer applicable to the propagation of this variable, as
the measurement likelihood itself is not deterministic. A
new particle filter based method is therefore developed to
estimate the posterior distribution of the occupancy variable
and perform map building.

The paper is organized as follows: Section III outlines
the general occupancy grid problem, showing how the exact

2Fixed threshold detection is indeed the optimal detector in the case of
spatially uncorrelated and homogenous noise distributions of known mean.

occupancy variable measurement likelihood can be used when
signal detection theory is considered. The problems with a
binary Bayes filter solution are also discussed. Section IV
presents the problem formulation while section V discusses
a particle filter solution to the recursion. Section VI then
presents some results of the proposed method using real
radar data collected from outdoor field experiments and
comparisons are made to a ground truth generated by SICK
laser range finders.

III. O CCUPANCY GRID MAPPING

Occupancy grid mapping is generally solved by assuming
each grid cell to be independent so that the occupancy variable
in each cell can independently estimated [2]. The independent
state of interest in each cell is regarded as being discrete
where, ∑

X∈Θ

X = 1. (1)

The set Θ can consist of an arbitrary number of
hypotheses but usually contains{Occupied, Empty}
in the case of a binary Bayesian approach [5] and
{Occupied, Empty, Unknown} in the case of a Dempster-
Shafer approach [12]. As seen in [5], the ‘inverse’ Bayesian
approach recursively estimates the probability of each
hypothesis using the computationally efficient log-odds
approach,

log
P (m|zt)

1− P (m|zt)
= log

P (m|zt)
1− P (m|zt)

+ log
1− P (m)

P (m)
+ log

P (m|zt−1)
1− P (m|zt−1)

(2)

where m denotes the hypothesisX = Occupied and zt

represents a history of range measurements up to timet at
which the sensor hypothesized the presence of a landmark.
This is referred to as the inverse model asP (m|zt) inversely
maps from the measurement at timet to the state. Inverse
models are also required by Dempsters update rule,

m(X3) =

∑
X1∩X2=X3

mk(X1)mm(X2)

1− ∑
X1∩X2=∅

mk(X1)mm(X2)
. (3)

Heremk(·) andmm(·) representmass functionsrespectively
containing the sensor and prior evidences in support of each
hypothesis,{X1, X2, X3} ⊂ X. That is, a direct mapping
from the sensor measurement to the evidence in support of
each hypothesis. However, this approach requires ‘intuitive’
models as it is contrary to the way in which the sensor
operates. This may result in inconsistent maps as shown in
[5].

Approaches using the ‘forward’ sensor model,P (zt|m),
are also proposed [13]. Using the standard conditional in-
dependence assumptions the occupancy posterior can be ob-
tained from,

P (m|zt) = γP (zt|m)P (m|zt−1) (4)



whereγ is the normalizing constant. Sensor modelsspatially
distribute the measurement likelihood about the detected
range,d, typically using Gaussian spread functions with the
sensor range covariance,σ2. In the case of a 1D measurement,

p(zt|m) =
1√

2πσ2
e

(zt−d)2

2σ2 . (5)

Note in this model, the measurementzt is a range reading.
The range at which a sensor reports the presence of a
landmark can be used in the filtering of itslocation estimate.
However, whilst this may be correlated with the sensor’s
ability to correctly detect the landmark, the reported range at
which the landmark is hypothesised to exist does not provide a
measurement of the occupancy random variable. Therefore in
the context of occupancy variable filtering the measurement,
zt, should not be a range reading but should in fact be the sen-
sor’s output hypothesis decision on the presence or absence of
a landmark. That is, the measurement space should be rede-
fined aszt ∈ {Detection, No Detection}. As a result of this
subtlety, previous occupancy sensor models typically assume
complete knowledge of the sensors’ detection characteristics
(probabilities of detection and false alarm), and the occupancy
measurements become deterministic. The signal processing
and measurement intensity information that may be available,
are usually ignored. Consequently, this assumption allows for
each cell to contain a deterministic occupancy measurement
which can be updated using the binary log-odds equation (or
Dempsters equation in the case of evidential measurements).
This is in contrast to the location measurements which are
stochastically modeled and propagated.

A. Occupancy Mapping from Detection Space

Once the occupancy measurement,zt, is defined in de-
tection space rather than polar space, the measurement like-
lihoods (for both detection and non-detection) become real
signal processing parameters. A simple expansion of eqn
4 shows how the occupancy measurement likelihoods can
be obtained when the signal processing stage is considered.
Consider the probability of occupancy given a history of
measurements,

P (m|zt). (6)

The measurement historyzt can now be considered as a
set of hypothesis decisions on the presence or absence of
a target (derived through some function of the measured
signal intensity) given by the measurement model. Thus each
measurement,zt, can be denoted asD if a detection was
made, orD̄ if no detection was made. We can then expand
about both measurement hypotheses to get,

P (m|zt = D, zt−1) = γ−1
D P (zt = D|m)P (m|zt−1) (7)

γD = P (zt = D|m)P (m|zt−1) + P (zt = D|m̄)P (m̄|zt−1)
(8)

P (m|zt = D̄, zt−1) = γ−1
D̄

P (zt = D̄|m)P (m|zt−1) (9)

γD̄ = P (zt = D̄|m)P (m|zt−1) + P (zt = D̄|m̄)P (m̄|zt−1)
(10)

where m denotes occupancy and̄m denotes emptiness in
a given grid cell. These equations calculate in closed form
a statistically correct posterior of the occupancy random
variable, where the measurement likelihoodsP (zt = D|m),
P (zt = D|m̄), P (zt = D̄|m) and P (zt = D̄|m̄) are
those frequently encountered in target detection algorithms.
A graphical representation of the target detection hypothesis
is shown in figure 1. Here,p(x|m) andp(x|m̄) represent the
received signal fluctuation densities under both target present,
m, and target absent,̄m, situations respectively and are further
discussed in section V-A.
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Fig. 1. A graphical representation of the received signal classifi-
cation problem. T represents the decision threshold,µ is the mean
noise power andS̄ is the mean target signal-to-noise ratio. The
hypothesis decisions areH0: Target absent, andH1: Target present.
The measurement likelihoods required to calculate the posterior
probability of occupancy are also indicated.

The four probabilities present in the detection hypothesis
problem, which are also required by equations 7 and 9, are
typically referred to as,

P (zt = D|m)− Probability of Target Detection

P (zt = D|m̄)− Probability of False Alarm

P (zt = D̄|m)− Probability of Missed Detection

P (zt = D̄|m̄)− Probability of “Noise” Detection.

Note thatm can always be updated, given a detection, or no
detection hypothesis. These likelihoods can generally only be
calculated exactly when twoa priori assumptions are made,
that is - aknown mean target signal to noise ratio (SNR),
and known target power fluctuation likelihood. Under the
further assumption of identical and independently distributed
(IID) noise power (again of known mean), a suitable power
threshold can be calculated which will exactly obtain the the-
oretically derived detection (and hence occupancy) likelihood.
In this case, observations required to calculate the posterior
occupancy probability,P (m|zt), become deterministic and
thus the standard deterministic update of eqn 4 is valid.
However, when these assumptions are relaxed (the strongest
being the known SNR assumption), the above measurement
likelihoods become estimated properties and thus the propa-
gation of the occupancy random variable must be carried out
using stochastic filtering methods (EKF, Particle Filter, ...) as
opposed to a binary filter. As the measurement likelihoods
are two complimentary sets,{P (zt = D|m), P (zt = D̄|m)}



and {P (zt = D|m̄), P (zt = D̄|m̄)}, we only need estimate
one likelihood from each set.

Furthermore a binary filter approach will equally weight
both the measurement and the prior, as they are considered
to have equal covariances. Occupancy measurements are in
fact highly correlated with the vehicle location, and should
not be treated equally. For example, specular reflections are
likely to occur at high angles of incidences, and clutter free
observations should be treated with greater confidence than
those with interfering signals.

IV. PROBLEM FORMULATION

This section outlines the proposed system to jointly esti-
mate both the occupancy random variable and the measure-
ment likelihoods.

A. Data Format

From a radar perspective, the environment can be consid-
ered to consist of an unknown number of spatially distributed
signal probability density functions (pdf) of both unknown
distribution with unknown moments. A single sensor sweep
therefore acquires samples from these underlying environ-
mental pdfs and returns them in the form of a power-range
spectrum at each bearing angle. A sample of such a spectrum,
collected from an outdoor field test, can be seen in figure
2. This spectrum, therefore contains a single signal sample
at each theK discrete range increments from the sensor
for a given bearing angle. Each range at which a signal
sample is acquired by the sensor is referred to as arange
bin. To model such data, assumptions are typically made
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Fig. 2. A sample spectrum, from a frequency modulated continuous
wave radar, containing K (assumed independent) signal measure-
ments,sk, at K range bins for a single sensor bearing angle.

on the signal distributions under both target presence and
absence hypotheses. LetS(M) represent a single power-range
spectrum, withp(sk|Ωm,mk) being the target presence signal
pdf andp(sk|Ωm̄, m̄k) being the target absence (noise) signal
pdf, in the kth range bin.Ωm and Ωm̄ are the unknown
distribution moments. The noise pdf is assumed IID,∀ k ∈
{1, . . . ,K}, and the moments ofp(sk|mk = 1) are a function
of the target’s mean SNR,<. The spatial distribution are
typically modeled by point spread Gaussian functions using
the sensor’s range and bearing covariances.

B. Mapping Algorithm Overview

Figure 3 shows a block diagram of the estimation problem
under consideration. The system input is the true occupancy
state,m, which is a vector of K binary numbers indicating the
presence or absence of a target in the environment, in each
of the K range bins. The corresponding SNR’s,<, for each
target are also required. The sensor model block then uses
the targets range, SNR,p(sk|mk = 1) and p(sk|mk = 0) ∀
k to generate a raw noisy power-range spectrum,S(M), of
figure 2.
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Fig. 3. A block diagram of the proposed algorithm. The aim is to
estimate the posterior on the occupancy vector, M. This however
requires estimates of the measurement likelihoodsΘ̂. y represents
the measurements used in the Bayes filter.

C. Constant False Alarm Rate (CFAR) Detector

This block contains the signal detection algorithm which
has constant false alarm rate property. Its input the a single
power-range spectrum, and its output,Z, is a vector of K
binary numbers indicating the detection, or non-detection. A
more in-depth explanation of this block can be seen in [14].

D. Measurement Likelihood Estimator (MLE)

This block provides estimates ofboth measurement like-
lihoods, θd and θfa. They are estimated by assuming both
mk = 1 and mk = 0 respectively∀ k ∈ {1, . . . , K}. θd

requires estimates of< for each range bin. This will be further
discussed in section V-A.

E. Bayes Filter

The problem is therefore to evaluate the joint likelihood on
the occupancy and measurement likelihood random variables
at each timet,

p(mt, Θt|yt) (11)

where the measurement,yt consists a history of all measure-
ments likelihoods,Θt, which have been selected given the
history of binary detection hypotheses,Zt. Note thatmt now
represents the occupancy estimate an arbitrary bin,mk at time
t. As explained in the previous section, only two measurement
likelihoods are required, thus

Θt =
[

θd

θfa

]



with θd being the detection measurement likelihood andθfa

being the false alarm likelihood. Using Bayes rule to expand
(11) we get,

p(mt, Θt|yt) ∝ p(yt|mt, Θt)p(mt, Θt|mt−1, Θt−1). (12)

Assuming independence between the components of the mea-
surement likelihood we get,

p(yt|mt,Θt) = p(Z|mt, Θt)p(Θ̂t|mt, Θt). (13)

and as bothZt andmt are binary,

p(Z = 1|mt = 1,Θt) = θd

p(Z = 0|mt = 1, Θt) = 1− θd

p(Z = 1|mt = 0,Θt) = θfa

p(Z = 0|mt = 0, Θt) = 1− θfa.

Also a static process model implies,

p(mt, Θt|mt−1, Θt−1) = p(mt−1, Θt−1|yt−1). (14)

The measurement likelihoods,θd andθfa, remain unknown
quantities. Note that both the likelihoods and the map state,
m, are constrained to exist within the bounded limits[0, 1].
The following section therefore presents a particle filter
solution to the proposed problem.

V. PARTICLE FILTER IMPLEMENTATION

This section outlines the formulation for the filtering of
an occupancy random variable using the signal intensity
information from a measurement. The objective of this filter is
to propagate the posterior density of the occupancy variable,
p(mt, Θt|yt). Assuming the prior,p(mt−1,Θt−1|yt−1) to be
represented by a set of particles{xi

t−1, w
i
t−1},

p(mt−1,Θt−1|yt−1) =
N∑

i=1

w
(i)
t−1δx

(i)
t−1

(mt−1, Θt−1). (15)

As we have noa priori knowledge, we assume the measure-
ment likelihoods as uniformly distributed,

θd = U(0, 1)
θfa = U(0, 1)

and the prior on the map asp(m) = 0.5.

A. Measurement Model

This section outlines the derivation of both measurement
likelihoods, p(zt = D|m) and p(zt = D|m̄), which are
commonly referred to as the ‘probability of detection’,θd

and ‘probability of false alarm’,θfa. θd is a function of
the estimatedmean target SNR,<, an assumed target SNR
fluctuation model,p(<|<̄), as well as the detection threshold,
T . Pfa is generally a constant design parameter. As discussed
previously in section IV-A, the measurement dataS(M)
is assumed to consist of a vector of K consecutive (in
time or range) independent signal intensity measurements,
sk, for each bearing angle, shown previously in figure 2.
A priori signal distribution assumptions are made on both

p(sk|Ωm, mk) and p(sk|Ωm̄, m̄k) ∀k ∈ {1 . . . K}, where
the distribution momentsΩm andΩm̄ are generally assumed
unknown and must be estimated using the signal intensity
information.

1) The False Alarm Likelihood Measurement:Given the
distribution p(sk|Ωm̄, m̄k) ∀k ∈ {1 . . . K} with known
Ωm̄, an optimal detection thresholdTk, calculated through a
function ofΩm̄ can be derived to obtain a constantθfa. In the
case ofunknownΩm̄, with certain distribution assumptions
(Exponential, Rayleigh, Weibull, K-distributed), an adaptive
Tk which is independent of the unknown parametersΩm̄

can be obtained and a constantPfa maintained. Therefore,
constant false alarm rate (CFAR) detectors maintain the pre-
defined false alarm likelihood,θfa, if the K consecutive
intensity measurements are IID samples fromp(xk|Ωm̄, m̄)
k ∈ {1 . . . K}, and more importantly,given that the distri-
bution assumption onp(s|Ωm̄, m̄), is valid. The density of
equation?? will thus become deterministic.

2) The Detection Likelihood Measurement:To make an es-
timate ofθd, we must first estimate the targets mean SNR,<̄.
Taking the measured intensity in bink, {sk|m}, as the signal
+ noise measurement (assuming the existence of a target),
we must therefore estimate the local noise intensity at that
bin to generate an SNR estimate. Using leading and lagging
windows, N intensity measurements are used to generate this
estimate. From the signal detection literature [16], there are
numerous adaptive methods of generating local estimates of
the unknown noise distribution parameters. Whilst most signal
processing literature considers the probability of detection for
targets of known SNR, this work requiresθd to be estimated
from the measured intensity information using an assumed
distribution p(s|Ωm,m), but with an unknownmean SNR.
Thus, given an estimate of the local noise intensity in bink,
{sk|m̄}, generated by the detector,<̄k can be estimated as,

<̄k =
{sk|m} − {sk|m̄}

{sk|m̄} . (16)

An ordered-statistics approach [17], which is adopted in
this work, has been shown to be most robust in situations
of high clutter and multi-target situations, as is commonly
encountered in a field robotics environment. Under certain
distribution assumptions, using an ordered statistic noise
estimate, closed form solutions exist forθd,

θd =
(

1 +
Tk{sk|m̄}
1 + <̄k

)−N

(17)

with,

p(s|Ωm̄ = µ, m̄) =
1
µ

exp(−s/µ)

p(s|Ωm = {µ,<},m) =
1
µ

exp
(
(−s/µ) + <)

)I0

(
2

√
<s

µ

)

p(<|<̄) =
2<
<̄ exp(−<2/<̄).

Thus, approximating each estimate as a Gaussian random
variable, we can generate a Gaussian distributed estimate of



θd. Given an estimate,̄Sk of the mean SNR in range bink,
we can estimate the measurement likelihood, which is then
sampled during the occupancy measurement update as seen
in equation??.

VI. EXPERIMENTS

A log odds model is dependant on the order of the
measurements -DDDD̄D̄

In this section the proposed filter is analyzed using real
data collected from a 77GHz FMCW radar in an outdoor
environment. The first example propagates an existence vari-
able in each range bin of the radar (K = 800) at a single
bearing angle. A sample spectrum from this data was shown
previously in figure 2. It is assumed that there are three
reflections present in the data, two from targets and one
from multipath effects. As shown in figure 4, with noa
priori information available, the variables are initialized with
a uniform distribution. In this exampleNr andNl (as seen in
equations??and??) are chosen to be 20. An ordered statistics
approach is used to generate a local estimate of the noise level
in each range bin, a leading and lagging window width of 20
bins, with 2 guard cells at each side of the cell-under-test.
Using a swerling I fluctuation assumption [15], and aPfa

of 10−6, the mean and variance of the detection probability
can be estimated according to equation 17 for every range
bin, prior to the target presence hypothesis decision. Once the
hypothesis,H0 : m̄ or H1 : m, is made at each range bin, the
measurement likelihoods,p(zt = D|m) and p(zt = D|m̄)
can be defined. Samples from these densities are shown
in figure 5. Note in this most conservative measurement
likelihood, every range bin is treated independently. That is,
for each time stept, each peak in the data (under both null
and alternate hypotheses), is treated as a potential target,
and no model of the sensor beam propagation properties
is assumed. Mixing these samples with the prior samples
and resampling according to equations?? - ??, we get the
posterior density samples in each range bin as seen in figure 6,
with an associated variance seen in figure 7. Large uncertainty
exists in regions of missed detections as there is in adequate
information to distinguish between empty space or a missed
detection. Figures 8 and 9 shows the same corresponding plots
after 5 iterations. It can be seen that the variance remains
practically zero for most cells however due to high variance
SNR estimates, particulary at 5m and 150m, there remains
some uncertainty in the existence estimate. From this plot it
can be seen that the filter is most certain of target presence
at approximately 135m, as the existence estimate is close to
unity and its associated variance is close to zero.

The second experiment was conducted in an outdoor
carpark within the university campus. A picture showing
an overview of the carpark is seen in fig 11. Due to the
difficulty in getting an accurate “ground truth” for outdoor
occupancy grid mapping algorithms, a comparison map was
constructed from two back-to-back LMS SICK laser sensors,
as shown in figure 12. A picture of the vehicle ‘Johnny 5’
is shown in figure 10. With built-up surroundings, the GPS
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Fig. 4. The uniform a priori occupancy samples at each range bin
with the mean (dashed) plotted
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of detection and the output hypothesis of the detector. Samples
represent particle approximations ofp(zt = D|m) or p(zt = D|m̄),
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represents the mean value ofPd in each range bin, independent of
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Fig. 6. The posterior existence samples after a single filter iteration,
with the dashed line representing the mean occupancy in each bin.
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Fig. 8. The posterior occupancy samples, after five filter iterations,
with the dashed line again representing the mean existence in each
bin.
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Fig. 9. Variance of the posterior occupancy samples, after five filter
iterations. The filter is most certain of landmark existence at 135m
as there is low variance on a high occupancy estimate.
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Fig. 10. Test platform ‘Johnny 5’.

data acquired was not accurate to determine ground truth
location. As the laser scans frequently obtained returns from
the ground, automatic matching techniques failed. Thus the
consecutive laser scans were manually matched to determine
the true location of the vehicle at each update.

The environment contains numerous objects of varying
dimensions with fluctuating probabilities of detection. In this
environment, missed detections of small targets such as lamp
posts and trees are common. Although a Log-Odds update,
such as that seen in [18], presents a computationally simplistic
approach, its range ([0,∞]) makes it susceptible to high
amplitude false alarms. Furthermore, there is no context of
“uncertainty” for such a filter, thus all detections are equally
trusted and scaled according to the same measurement model.
Figure??shows the resulting maps based on the standard log-
odds implementation, with all occupancy estimates treated
as being statistically equivalent. Figures 13 and 14 show the
expected value of the existence variables on the same map
along with their associated variances. Again low variance
estimates can be extracted in regions of unbiased SNR es-
timates, which occur mostly in regions of low clutter. When
a feature is present within some clutter (perhaps a bush) an
increased uncertainty is present in the existence estimate.
Finally figure 15 shows a cross section through the map,
plotting the existence estimate along with its 2 sigma bounds.

A. Actual Probability of False Alarm

Can use an evidential approach, measure pdf deviation from
the assumed..or add a noise to the estimate. Has a large affect
on the calculated occupancy posterior.

VII. C ONCLUSION

This paper presented an alternate method of tracking a
features “quality” by considering the sensor signal processing.
It showed that the measurement likelihood typically used
in occupancy grid algorithms should in fact be modeled as
a density function as opposed to a deterministic function,
which is normally the case. By examining the measurement
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Fig. 11. Overview of testing ground for comparison with the radar
generated maps for figures?? and 13 (Cars were absent at time of
scan).

R
a

n
g

e
 (

m
)

Fig. 12. The corresponding laser map for the carpark environment
shown in figure 11.

model and using signal detection theory, it is shown that
the existence random variable can be calculated in closed
form without the need of heuristic models. However, the
measurement likelihood used in the existence calculation is
in itself an estimated entity, and is thus modeled by a density
function rather than a discrete variable. The standard discrete
Bayes estimation framework therefore no longer applies to
the occupancy grid problem and a particle filter approach is
proposed. Using discrete Bayes solutions for each particle
with random samples from the measurement likelihood, a
particle set representing the posterior existence can be gen-
erated. Weights for these posterior particles are also obtained
by propagating prior and measurement weights through the

Fig. 13. A plot of the mean existence value on the map. The model
considered missed detections of objects with low radar cross section
unlike that of the log odds model.

Fig. 14. A plot of the variance of the occupancy estimates. This
allows us to statistically quantify the occupancy estimates on the
map which is not considered in previous methods.

discrete Bayes filter. The resulting set of posterior particles
is then resampled and the particle count is reduced to the
original number. By virtue of the static state assumption, these
particles then represent the prior distribution for the following
iteration.

This concept was demonstrated for a MMWR sensor which
is typically used in an outdoor environment. The sensor
gives access to unprocessed range data, allowing for custom
feature detectors to be developed. The framework then allows
for the accurate assignment of map existence probabilities,
irrespective of the hypothesis chosen by the detector.

However, significant work needs to be carried out to



50 100 150 200 250 300 350 400 450 500

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cell Number

P
ro

b
a

b
lit

y
 o

f 
E

x
is

te
n

c
e

Fig. 15. A cross section through the map showing the estimate
occupancy with 2 sigma bounds. For illustration purposes the bounds
are not cropped at the variable bounded limits of 0 and 1.

accurately estimatePfa in regions of the map which deviate
from the homogenous exponential assumption. Since for most
practical scenariosPd À Pfa, any Bayesian based mapping
method will assign almost unity existence to any detection.
However, when the assumption on the noise distribution
is violated andPfa deviates from its theoretical value, an
evidential method should be applied as there would be large
uncertainty as to the true false alarm probability. This would
further improve the mapping accuracy. Further work also
would integrate three dimensional uncertainties (in Euclidean
location as well as existence) into data association decisions
and SLAM algorithms.
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