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Abstract

Research in field robotics often utilises scanning range
This article
addresses reliable feature extraction from continuously
scanning range sensors operating outdoors. Contrary
to other detection methods, an algorithm is presented
which detects features on-line, as soon as the range to
that feature has been sensed. A model s derived which
makes predictions of range, before each new range sam-
ple s recorded. These are used to produce validation

sensors to aid autonomous navigation.

regions within which each new sample should lie, pro-
vided 1t belongs to the surface with the same smoothness
characteristics as its range predecessors. The detection
process model adapts its validation region according to
the spatial gradient of the surface being sensed, and s
implemented in extended Kalman Filter (EKF) recursive
form. Results are demonstrated with laser detection and
ranging (ladar) sensor data recorded outdoors.

1 Introduction

An extremely useful asset to aid autonomous robot nav-
igation is the estimation of range. Recent research in
rugged, outdoor environments has exploited mm-wave
radar and laser detection and ranging (ladar) technolo-
gies, while sensing methods for the detection of sea floor
features also include scanning coherent illumination and
side-scan sonar methods [1, 2, 3]. There is also a trend in
vehicle localization research which uses scanning range
finders as an aid to vision based methods for feature
detection [4].

To solve the localization problem, some part of a sen-
sor scan must be discernible from all other parts, and
must be possible to find again from sensor data recorded
in other locations. Such data corresponds to a “feature”.
This article focuses on the reliable extraction of such fea-
tures from continuously scanned range data. It will be
demonstrated that a chosen type of feature must have
a strictly defined mathematical method for its identifi-
cation, which guarantees its future identification, when
scanned from other locations. Only then can feature
matching and autonomous localization and map build-
ing take place [5]. Section 2 reviews some of the feature
detection algorithms applied to vehicle navigation and
examines the advantages of a planar surface edge de-

tection algorithm, previously published by the author,
when applied to continuously scanning range finders. In
the outdoor or under water world, the presence of planar
surfaces cannot be assumed. Therefore an algorithm is
presented in section 2 which is still optimally suited to
process continuously scanned range data, but will gener-
alize the features it finds to any kind of surface in which
changes in “smoothness” occur.

Some initial results in estimating the change in spatial
gradient of various surfaces will be given in section 3.

To optimize the performance of a feature detector
based on the changes in gradients along a scanned sur-
face, section 4 uses this quantity to derive range bounds
for the next range point. This is done under a recur-
sive, extended Kalman filter (EKF), discrete time, state
update formulation.

Finally section b shows results of the feature detector
running on real ladar range data recorded outdoors, and
demonstrates the potential for successfully matching de-
tected features, from differing sensor positions.

2 On-Line Feature Detection

While a great deal of research has been published on the
extraction of image discontinuities in vision, the robust
detection of features from range data is less publicized.
The extraction of regions of constant depth from sonar
data, which can be used to detect walls and corners
is a successful technique, but requires the collection of
large volumes of data, from different vehicle positions
[5]. Use of the Hough Transform has been applied to
optical range data in order to extract line segments from
noisy data [6]. In all of these methods, features are
extracted only after a complete scan is made and no
account of unique range variances associated with the
range data is made.

This article extends previous work published by the
author to the general detection of changes in “smooth-
ness” of any arbitrary surface, as an on-line process [7].
Consider, for example, the general planar surface shown
in figure 1 and the corresponding sensed data points
which would result from a perfect scanning line of sight
sensor. Simple trigonometry shows that the relationship
between successive range readings, when the light beam
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Figure 1: The relationship between successive range
readings when scanning a planar surface.

1s incident upon a planar surface 1s:

did; 41
2d; cosy) — diqq

diy2 = ( (1)

where 7 is the constant angle (in bearing) between suc-
cessive samples of the sensor as it rotates about its ver-
tical axis. Note that the relationship given in equation
1 is independent of the elevation angle «.

Equation 1 is a second order difference equation with
respect to time since range sample d; o is recorded one
time unit after d;11. Even though only two points are
necessary to provide the predicted third point, by defin-
ing two states, the system can be completely defined
by a 2D discrete time difference equation, lending itself
to a recursive, Kalman filter estimation process. This
technique is used to validate range observations with
their expected values, which are optimized with respect
to sensor noise and the above model. Hence observa-
tions which could not be validated were considered no
longer to belong to the planar surface, which was being
tracked, and were marked as edges.

This system model has provided a good basis for edge
detection within indoor environments, but in the out-
door world, the assumption that planar surfaces exist,
becomes rather restrictive. While it is useful to keep the
on-line nature of the above discontinuity detection algo-
rithm, the planar surface model will now be changed.

As a result of analyzing laser detection and ranging
(ladar) scans in various environments, such as car parks,
dense tropical jungle and rocky cliff faces, it has been
noted that monitoring changes in spatial gradient can be
used to detect features reliably! [8]. This time however,
two possible values for the next predicted range reading
will result based on the expected change in gradient, in
a positive or negative sense. In particular, once the first
two points are sensed, a local coordinate system in the
sensor space (%5, ¥s) can be defined as shown in figure 2.
The x, axis is the line joining both end points of d; and

1Since the changes in range itself becomes so pronounced at
the extremities, one may ask why not just monitor these changes
to find the edges? The problem here is, that when the sensor
line-of-sight subtends a large angle of incidence with the surface
normal (near tangential scanning), large changes in range are to
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Figure 2: Three successive range points, d;, diy1 and
diyo are recorded sequentially in time and space, sepa-
rated in space by a constant incrementing angle v. The
local coordinate system is defined such that the x; axis
connects the first 2 range points A and B.

dit1, and clearly in this coordinate system the gradient
of line AB is zero. Without loss of generality, the change
in gradient between AB and BE is the gradient of BE,
which can be determined as a function of d;, d;41, diya
and ~v:

r.=B

dxg

(didit1 + diy1diya — 2d;d;qa cosy)siny
d?_l_l — did;41 cosy — dip1d; 42 cosy + didiqo cos 2y

It should be noted that this is the change in gradient
between AB and BE in any chosen coordinate system
— a necessity for matching techniques, when the same
feature is searched from different positions.

3 Real and Simulated Data

The use of the above equation is analyzed in figures 3 to
5, where plots of actual range and A%ﬁ Versus scanning
angle are shown, for various sensed objects.

Initially the graphs in figures 4 and 5 were recorded
using a prototype scanning ladar, adapted for outdoor
use [7]. The spatial differential Aggi of the signal is
numerically determined in the lower graphs of each fig-
ure, which is well known to be greatly affected by noise
[9]. To separate the geometrical effect from the mea-
surement noise effect on Aggi, the range data was also
simulated in each case, by hand measuring the geome-
try of the scanned surfaces with respect to the sensor’s
position. The graphs in figure 3 show the results which
would be obtained with a noiseless, perfect line-of-sight

scanning sensor, when sensing the wall. The edges of

be expected even when no extremity is being sensed.
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Figure 3: Simulated line-of-sight data and Agis versus

scanning angle as the sensor scans a wall.
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Figure 4: Recorded line-of-sight data and Afllis versus
scanning angle as the sensor scans a wall.

the wall are clearly discernible from the peaks in the
gradient. With the real measurements (figure 4), these
peaks must be determined amongst those resulting from
SENSOT measurement noise.

In the real data recorded from the rock surface (figure
5), noise corrupts the magnitudes of the estimated gra-
dients, however close examination of the lower graph in
figure 5 shows marked increases in the gradient at the
edges, and at other points along the surface. Clearly
range estimation noise must be dealt with in the recur-
sive estimation of features, and will be covered in section

4.2.

4 Prediction of Range Bounds

From the estimate of Afllis, a mintmum value for the
next range reading d;, 5 is predicted, based on the next

dys
dzg )

value dz-'l—+3 is predicted based on the next gradient chang-

spatial gradient changing by —A and a mazimum

ing by +A%= This is demonstrated in figure 6. From
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Figure 5: Recorded line-of-sight data and Agis versus
scanning angle as the sensor scans a rocky cliff face.

sight sensor

Figure 6: Predicted bounds for range reading d;s (FG),
based on a negative or positive change in gradient equal
in magnitude to the previous change (gradient BE).

the figure it can be shown that:

diis = [ (di,diy1,diya,7)

143 -
_ (2d; — diq1)diqo (2)
d; — 2d;41 cosy + 2d; cos 27
and:
dfys = [H(di dig1,dig2,7) (3)
o 2diqo(df + di — 2d;di41 cosy)
= Giy3

(di — 2d;41 cos y + 2d; cos 27)
(2didiyo cosy — didit1 — dip1dign)
(R+S+T+10)

where R, S, T and U are functions of d;, d;4+1, d;+2 and
.

4.1 Discrete Time System Model

To form a true recursive prediction formula, equations
2 and 3 can be written in 3D discrete time state space



form. Defining three states at discrete time k: z1(k) =
di, za(k) = diy1, #3(k) = diyo. then if a unit discrete
time increment represents the time the sensor head ro-
tates through the angle ~:

zi(k+1) za(k)
za(k+1) _ z3(k)
25 (k+1)or F(x1(k), za(k), x3(k), ) or
zf(k+1) fH(ea(k), za(k), 2s(k), 7)
. (4)
xt(k 4+ 1) = FE(x*(k)) (5)

where F¥ is the non-linear function of the state x(k)
according to each function fi(), defined in equations
2 and 3. The superscripts & will now be dropped.

The above system model corresponds to the temporal
relationship between past sensor measurements and the
present range limits 2% (k 4 1) within which z3(k + 1)
(or d;43) is bounded if it is assumed to belong to the
contour being tracked.

4.2 Sensor Measurement Noise

The observation of the state is the range measurement
z(k), recorded just before prediction takes place:

where w(k) is a zero mean additive noise process, with
unique known variance, accompanying each sensor range

value [T7].

4.3 Recursive EKF Formulation

The tool used to place the above predictor/observer
equations into recursive form is the EKF. After filter
initialization (recording dy, d; and d»), filter prediction
takes place such that?:

x(k+1]k)=F(x(k|k)) (6)

where the terms follow the usual EKF notation [10]

?During filter initialization, it is possible that lines AB and BE
in figure 6 are almost perpendicular. This will cause the model
to produce its next gate at £90° meaning that the next range
point will definitely lie within the acceptable bounds. This action
is however correct, as subsequent range points are guaranteed to
produce further gates at angles of magnitude < 909, making the
filter adapt its curvature constraints to the true properties of the
surface.

3No system model noise term is used here, since the algo-
rithm is to find range points which fall outside the strictly defined
smoothness constraints of the derived model.

To provide full recursive prediction and state update,
the state error covariance matrix P(k+ 1| &) must also
be calculated. The usual EKF solution to this problem
requires the linearization of F about the previous state
prediction x(k | k) so that differences between predicted
and actual states at time k, x(k), can be used to update
the prediction of P(k + 1] k):

Pk+1|k)=VEP(k|k)V'F (7)

where VF is the Jacobian matrix of F. The accuracy
of the predicted error covariance matrix in equation 7 is
dependent on the local linearity of the function f*(...)
about the previous predicted values of x(k | k£)). Prob-
lems of filter bias and inconsistency can result, depend-
ing on f* (...). A recent, alternative solution is the use of
the distribution approzimation filter (DAT), which has
been shown to be more accurate than linearization, and
avoids the necessity to calculate the Jacobian matrix
VF [11].

The important aspects of this EKF cycle are:

1. Innovation: The difference between the expected
and actual sensor data. If:

Cx (k+1|k)<z(k+1)<CxT(k+1]k) (8)

then all range measurements are validated and the in-
novation v(k 4 1) is set to zero. Else:

v(k—i—l):min{ Cx (k+1|k)—2(k+1) } )

2(k+1)—CxT(k+1|k)
2. Variance of Innovation:
s(k+1)=02(k+ 1)+ CP(k+1|k)CT (10)

where o2(k + 1) denotes the recorded range variance at
time k + 1 [7].

3. Validation Gate. The innovation and its variance
are used to form a validation gate equation:

Dk +1)=v*(k+1)s™ (k+1) (11)

The magnitude of which is used to detect features.

4. The normal EKF cycle continues until optimal full
state vector update results such that x(k +1 | &£+ 1)
and P(k—+ 1] k+ 1) are determined and the system is
now in recursive form [10, 7].

5 Results

Range versus scan angle, taken from a full 27 rads
sweep in an outdoor, built-up area is shown in figure
7. Surrounding the range data are plots of #Z(k + 1 |
k+1)+34/s(k + 1), these corresponding to ‘3 sigma lim-

its’ surrounding the updated state estimates of the range
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Figure 7: 3 stgma bounds and range readings when scan-
ning a built-up area.

bounds (dashed lines) which enclose range data which
results from surfaces with constant changes in spatial
gradient, with 99.7% probability.

The peaks in the range bound curves result from com-
binations of d;, d;41 and d;42, which cause dz:'t+3 to be-
come singular?. Whenever the range curve exits the en-
velope of dashed lines, a feature is noted at that range
point.

Figure 8 shows a zoomed view, from figure 7, of two
walls between scan angles 4.1 and 6.1 rads. Changes in
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Figure 8: Zoomed view of a section of figure 8. The
stars at H to N represent detected features.

smoothness have been detected at points H, J, K, L, M,
and N. It can be seen in the right of the top graph that,
with the exception of points M and N, the envelopes
track the range values quite closely. If there was no
noise in the measurements, the envelope would converge
to the range values themselves, making the smoothness
constraint on the surface being sensed, very stringent.
In these experiments, the range measurements were ac-
companied by unique range variances, which cause the
EKF cycle to be more lenient in its generation of the
range bounds [12].

Figures 9 and 10 show similar results taken from a
cliff face and cluster of trees. 1In figure 9, features are
detected at the edges P and R, and along the surface at
Q. The cluster of trees (figure 10) is a potential source of
many features, based on changes in smoothness. Due to

4 when d?: 5 in equations 2 and 3 are singular, the prediction
lies on a line parallel to the next line-of-sight of the sensor so that
they intersect at infinity. In this case, the range bounds lie on the
minimum and maximum range of the sensor.
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Figure 9: 3 sigma bounds and range data when scanning
a cliff face. P to R are detected features.
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Figure 10: & sigma bounds and range data when scan-
ning a cluster of trees. S to X are detected features.

the noise in the sensor measurements however, the filter
cycle requires quite large changes in surface gradient,
for feature detection (points S to Y).

The final test for any feature detection algorithm must
lie in 1ts ability to detect the same features from new
positions. Figure 11 shows a plan view of a single 360°
range scan and the range bounds in Cartesian coordi-
nates. The ladar was mounted on a vehicle positioned at
the triangle shown (coordinates (23, 15)). The scanned
objects were: A: Tree cluster, B: Jagged rock face, C:
Large circular enclosure and D: Brick wall. Features
from the scan are shown as circles (o).

Finally, to show the success rate of feature detection
repeatability from different sensor positions, figure 12
shows detected features from the same objects as figure
11, recorded from 5 different locations. Features are this
time marked as stars (x), if they were successfully de-
tected from all 5 positions. If they were detected from
at least 2 positions they are marked as circles (0)®. Due
to the statistical nature of the estimation process, not
every feature is detected from all positions, but it can
be seen that the algorithm has a reasonable success rate
at finding the same feature form different positions. In
the experiment conducted, 18 features could be detected
from all 5 positions. This would provide an extremely
useful fuel source for matching algorithms, on which mo-
bile robot localization and map building could be based.

5due to the finite resolution of the ladar, features were consid-
ered to coincide, if they were within a 1m distance of each other.
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Figure 11: 8 sigma bounds and range readings when
scanning a cluster of trees (at A), a jagged cliff face
(at B), a large circular enclosure (at C) and a wall (at
D). The circles represent detected features.

6 Summary

A feature detection algorithm has been derived and
demonstrated which 1s specifically aimed at finding fea-
tures from scanning range finders, on-line. This tech-
nique has the advantage of allowing all kinds of surfaces
to be used for edge detection.

This ‘adaptive’ model was implemented in discrete
time EKF recursive form, so that the effect of sen-
sor measurement noise, when the range variances are
known, on the detection of features is minimized. Re-
sults were demonstrated in which features were detected
at relatively large distances (> 10m) with ladar range
data in outdoor environments. Since the detector was
successful at finding the same features from different
sensor locations, the algorithm provides the potential
for algorithms to match such features for navigation pur-
poses in general outdoor environments.
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