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Abstract
Research in �eld robotics often utilises scanning range
sensors to aid autonomous navigation� This article
addresses reliable feature extraction from continuously
scanning range sensors operating outdoors� Contrary
to other detection methods� an algorithm is presented
which detects features on�line� as soon as the range to
that feature has been sensed� A model is derived which
makes predictions of range� before each new range sam�
ple is recorded� These are used to produce validation
regions within which each new sample should lie� pro�
vided it belongs to the surface with the same smoothness
characteristics as its range predecessors� The detection
process model adapts its validation region according to
the spatial gradient of the surface being sensed� and is
implemented in extended Kalman Filter �EKF� recursive
form� Results are demonstrated with laser detection and
ranging �ladar� sensor data recorded outdoors�

� Introduction
An extremely useful asset to aid autonomous robot nav�
igation is the estimation of range� Recent research in
rugged� outdoor environments has exploited mm�wave
radar and laser detection and ranging �ladar� technolo�
gies� while sensing methods for the detection of sea �oor
features also include scanning coherent illumination and
side�scan sonar methods ��� 	� 
�� There is also a trend in
vehicle localization research which uses scanning range
�nders as an aid to vision based methods for feature
detection ���
To solve the localization problem� some part of a sen�

sor scan must be discernible from all other parts� and
must be possible to �nd again from sensor data recorded
in other locations� Such data corresponds to a �feature��
This article focuses on the reliable extraction of such fea�
tures from continuously scanned range data� It will be
demonstrated that a chosen type of feature must have
a strictly de�ned mathematical method for its identi��
cation� which guarantees its future identi�cation� when
scanned from other locations� Only then can feature
matching and autonomous localization and map build�
ing take place ���� Section 	 reviews some of the feature
detection algorithms applied to vehicle navigation and
examines the advantages of a planar surface edge de�

tection algorithm� previously published by the author�
when applied to continuously scanning range �nders� In
the outdoor or under water world� the presence of planar
surfaces cannot be assumed� Therefore an algorithm is
presented in section 	 which is still optimally suited to
process continuously scanned range data� but will gener�
alize the features it �nds to any kind of surface in which
changes in �smoothness� occur�
Some initial results in estimating the change in spatial

gradient of various surfaces will be given in section 
�
To optimize the performance of a feature detector

based on the changes in gradients along a scanned sur�
face� section  uses this quantity to derive range bounds
for the next range point� This is done under a recur�
sive� extended Kalman �lter �EKF�� discrete time� state
update formulation�
Finally section � shows results of the feature detector

running on real ladar range data recorded outdoors� and
demonstrates the potential for successfully matching de�
tected features� from di�ering sensor positions�

� On�Line Feature Detection

While a great deal of research has been published on the
extraction of image discontinuities in vision� the robust
detection of features from range data is less publicized�
The extraction of regions of constant depth from sonar
data� which can be used to detect walls and corners
is a successful technique� but requires the collection of
large volumes of data� from di�erent vehicle positions
���� Use of the Hough Transform has been applied to
optical range data in order to extract line segments from
noisy data ���� In all of these methods� features are
extracted only after a complete scan is made and no
account of unique range variances associated with the
range data is made�
This article extends previous work published by the

author to the general detection of changes in �smooth�
ness� of any arbitrary surface� as an on�line process ����
Consider� for example� the general planar surface shown
in �gure � and the corresponding sensed data points
which would result from a perfect scanning line of sight
sensor� Simple trigonometry shows that the relationship
between successive range readings� when the light beam
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Figure �� The relationship between successive range
readings when scanning a planar surface�

is incident upon a planar surface is�

di�� �
didi��

�	di cos �� � di��
���

where � is the constant angle �in bearing� between suc�
cessive samples of the sensor as it rotates about its ver�
tical axis� Note that the relationship given in equation
� is independent of the elevation angle ��
Equation � is a second order di�erence equation with

respect to time since range sample di�� is recorded one
time unit after di��� Even though only two points are
necessary to provide the predicted third point� by de�n�
ing two states� the system can be completely de�ned
by a 	D discrete time di�erence equation� lending itself
to a recursive� Kalman �lter estimation process� This
technique is used to validate range observations with
their expected values� which are optimized with respect
to sensor noise and the above model� Hence observa�
tions which could not be validated were considered no
longer to belong to the planar surface� which was being
tracked� and were marked as edges�
This system model has provided a good basis for edge

detection within indoor environments� but in the out�
door world� the assumption that planar surfaces exist�
becomes rather restrictive� While it is useful to keep the
on�line nature of the above discontinuity detection algo�
rithm� the planar surface model will now be changed�
As a result of analyzing laser detection and ranging

�ladar� scans in various environments� such as car parks�
dense tropical jungle and rocky cli� faces� it has been
noted that monitoring changes in spatial gradient can be
used to detect features reliably� ���� This time however�
two possible values for the next predicted range reading
will result based on the expected change in gradient� in
a positive or negative sense� In particular� once the �rst
two points are sensed� a local coordinate system in the
sensor space �xs� ys� can be de�ned as shown in �gure 	�
The xs axis is the line joining both end points of di and

�Since the changes in range itself becomes so pronounced at
the extremities� one may ask why not just monitor these changes
to �nd the edges� The problem here is� that when the sensor
line�of�sight subtends a large angle of incidence with the surface
normal �near tangential scanning�� large changes in range are to
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Figure 	� Three successive range points� di� di�� and
di�� are recorded sequentially in time and space� sepa�
rated in space by a constant incrementing angle �� The
local coordinate system is de�ned such that the xs axis
connects the �rst � range points A and B�

di��� and clearly in this coordinate system the gradient
of line AB is zero� Without loss of generality� the change
in gradient between AB and BE is the gradient of BE�
which can be determined as a function of di� di��� di��
and ��

�

����dysdxs

����
xs�B

�

�didi�� � di��di�� � 	didi�� cos �� sin �

d�i�� � didi�� cos � � di��di�� cos � � didi�� cos 	�

It should be noted that this is the change in gradient
between AB and BE in any chosen coordinate system
� a necessity for matching techniques� when the same
feature is searched from di�erent positions�

� Real and Simulated Data

The use of the above equation is analyzed in �gures 
 to
�� where plots of actual range and � dys

dxs
versus scanning

angle are shown� for various sensed objects�
Initially the graphs in �gures  and � were recorded

using a prototype scanning ladar� adapted for outdoor
use ���� The spatial di�erential � dys

dxs
of the signal is

numerically determined in the lower graphs of each �g�
ure� which is well known to be greatly a�ected by noise
���� To separate the geometrical e�ect from the mea�
surement noise e�ect on � dys

dxs
� the range data was also

simulated in each case� by hand measuring the geome�
try of the scanned surfaces with respect to the sensor�s
position� The graphs in �gure 
 show the results which
would be obtained with a noiseless� perfect line�of�sight
scanning sensor� when sensing the wall� The edges of

be expected even when no extremity is being sensed�
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Figure 
� Simulated line�of�sight data and � dys
dxs

versus
scanning angle as the sensor scans a wall�
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Figure � Recorded line�of�sight data and � dys
dxs

versus
scanning angle as the sensor scans a wall�

the wall are clearly discernible from the peaks in the
gradient� With the real measurements ��gure �� these
peaks must be determined amongst those resulting from
sensor measurement noise�

In the real data recorded from the rock surface ��gure
��� noise corrupts the magnitudes of the estimated gra�
dients� however close examination of the lower graph in
�gure � shows marked increases in the gradient at the
edges� and at other points along the surface� Clearly
range estimation noise must be dealt with in the recur�
sive estimation of features� and will be covered in section
�	�

� Prediction of Range Bounds

From the estimate of � dys
dxs

� a minimum value for the

next range reading d�i�� is predicted� based on the next

spatial gradient changing by �� dys
dxs

� and a maximum

value d�i�� is predicted based on the next gradient chang�

ing by �� dys
dxs

� This is demonstrated in �gure �� From
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Figure �� Recorded line�of�sight data and � dys
dxs

versus
scanning angle as the sensor scans a rocky cli� face�
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Figure �� Predicted bounds for range reading di�� �FG��
based on a negative or positive change in gradient equal
in magnitude to the previous change �gradient BE��

the �gure it can be shown that�

d�i�� � f��di� di��� di��� ��

�
�	di � di���di��

di � 	di�� cos � � 	di cos 	�
�	�

and�

d�i�� � f��di� di��� di��� �� �
�

� d�i�� �
	di���d�i � d�i�� � 	didi�� cos ��

�di � 	di�� cos � � 	di cos 	��

�
�	didi�� cos � � didi�� � di��di���

�R� S � T � U�

where R� S� T and U are functions of di� di��� di�� and
��

��� Discrete Time System Model

To form a true recursive prediction formula� equations
	 and 
 can be written in 
D discrete time state space



form� De�ning three states at discrete time k� x��k� �
di� x��k� � di��� x��k� � di��� then if a unit discrete
time increment represents the time the sensor head ro�
tates through the angle ��

�
���

x��k � ��
x��k � ��

x�� �k � �� or
x�
�
�k � ��

�
��� �

�
���

x��k�
x��k�

f��x��k�� x��k�� x��k�� �� or
f��x��k�� x��k�� x��k�� ��

�
���
��

i�e�
x
��k � �� � F

��x��k�� ���

where F� is the non�linear function of the state x�k�
according to each function f������� de�ned in equations
	 and 
� The superscripts � will now be dropped�
The above system model corresponds to the temporal

relationship between past sensor measurements and the
present range limits x�� �k � �� within which x��k � ��
�or di��� is bounded if it is assumed to belong to the
contour being tracked�

��� Sensor Measurement Noise

The observation of the state is the range measurement
z�k�� recorded just before prediction takes place�

z�k� � di�� � Cx�k� � w�k��

�
� � �

	
�
���

x��k�
x��k�

f��x��k�� x��k�� x��k�� �� or
f��x��k�� x��k�� x��k�� ��

�
���� w�k�

where w�k� is a zero mean additive noise process� with
unique known variance� accompanying each sensor range
value ����

��� Recursive EKF Formulation

The tool used to place the above predictor�observer
equations into recursive form is the EKF� After �lter
initialization �recording d�� d� and d��� �lter prediction
takes place such that��

�x�k � � j k� � F��x�k j k�� ���

where the terms follow the usual EKF notation �����

�During �lter initialization� it is possible that lines AB and BE
in �gure � are almost perpendicular� This will cause the model
to produce its next gate at �	
o meaning that the next range
point will de�nitely lie within the acceptable bounds� This action
is however correct� as subsequent range points are guaranteed to
produce further gates at angles of magnitude � 	
o� making the
�lter adapt its curvature constraints to the true properties of the
surface�

�No system model noise term is used here� since the algo�
rithm is to �nd range points which fall outside the strictly de�ned
smoothness constraints of the derived model�

To provide full recursive prediction and state update�
the state error covariance matrix P�k�� j k� must also
be calculated� The usual EKF solution to this problem
requires the linearization of F about the previous state
prediction �x�k j k� so that di�erences between predicted
and actual states at time k�  x�k�� can be used to update
the prediction of P�k � � j k��

P�k � � j k� � rF P�k j k� rT
F ���

where rF is the Jacobian matrix of F� The accuracy
of the predicted error covariance matrix in equation � is
dependent on the local linearity of the function f������
about the previous predicted values of �x�k j k��� Prob�
lems of �lter bias and inconsistency can result� depend�
ing on f������� A recent� alternative solution is the use of
the distribution approximation �lter �DAF�� which has
been shown to be more accurate than linearization� and
avoids the necessity to calculate the Jacobian matrix
rF �����
The important aspects of this EKF cycle are�

	� Innovation
 The di�erence between the expected
and actual sensor data� If�

C�x��k � � j k� � z�k � �� � C�x��k � � j k� ���

then all range measurements are validated and the in�
novation v�k � �� is set to zero� Else�

v�k � �� � min



C�x��k � � j k�� z�k � ��
z�k � ���C�x��k � � j k�

�
���

�� Variance of Innovation


s�k � �� � ��r �k � �� �CP�k � � j k�CT ����

where ��r �k� �� denotes the recorded range variance at
time k � � ����

�� Validation Gate� The innovation and its variance
are used to form a validation gate equation�

D�k � �� � v��k � ��s���k � �� ����

The magnitude of which is used to detect features�

�� The normal EKF cycle continues until optimal full
state vector update results such that �x�k � � j k � ��
and P�k � � j k � �� are determined and the system is
now in recursive form ���� ���

� Results

Range versus scan angle� taken from a full 	� rads
sweep in an outdoor� built�up area is shown in �gure
�� Surrounding the range data are plots of x�� �k � � j

k����

p
s�k � ��� these corresponding to !
 sigma lim�

its� surrounding the updated state estimates of the range
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Figure �� � sigma bounds and range readings when scan�
ning a built�up area�

bounds �dashed lines� which enclose range data which
results from surfaces with constant changes in spatial
gradient� with ����" probability�
The peaks in the range bound curves result from com�

binations of di� di�� and di��� which cause d�i�� to be�
come singular�� Whenever the range curve exits the en�
velope of dashed lines� a feature is noted at that range
point�
Figure � shows a zoomed view� from �gure �� of two

walls between scan angles �� and ��� rads� Changes in
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Figure �� Zoomed view of a section of �gure � The
stars at H to N represent detected features�

smoothness have been detected at points H� J� K� L� M�
and N� It can be seen in the right of the top graph that�
with the exception of points M and N� the envelopes
track the range values quite closely� If there was no
noise in the measurements� the envelope would converge
to the range values themselves� making the smoothness
constraint on the surface being sensed� very stringent�
In these experiments� the range measurements were ac�
companied by unique range variances� which cause the
EKF cycle to be more lenient in its generation of the
range bounds ��	��
Figures � and �� show similar results taken from a

cli� face and cluster of trees� In �gure �� features are
detected at the edges P and R� and along the surface at
Q� The cluster of trees ��gure ��� is a potential source of
many features� based on changes in smoothness� Due to

�when d
�

i��
in equations � and � are singular� the prediction

lies on a line parallel to the next line�of�sight of the sensor so that
they intersect at in�nity� In this case� the range bounds lie on the
minimum and maximum range of the sensor�
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Figure �� � sigma bounds and range data when scanning
a cli� face� P to R are detected features�
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Figure ��� � sigma bounds and range data when scan�
ning a cluster of trees� S to X are detected features�

the noise in the sensor measurements however� the �lter
cycle requires quite large changes in surface gradient�
for feature detection �points S to Y��

The �nal test for any feature detection algorithmmust
lie in its ability to detect the same features from new
positions� Figure �� shows a plan view of a single 
��o

range scan and the range bounds in Cartesian coordi�
nates� The ladar was mounted on a vehicle positioned at
the triangle shown �coordinates �	
� ����� The scanned
objects were� A� Tree cluster� B� Jagged rock face� C�
Large circular enclosure and D� Brick wall� Features
from the scan are shown as circles ����

Finally� to show the success rate of feature detection
repeatability from di�erent sensor positions� �gure �	
shows detected features from the same objects as �gure
��� recorded from � di�erent locations� Features are this
time marked as stars ���� if they were successfully de�
tected from all � positions� If they were detected from
at least 	 positions they are marked as circles ����� Due
to the statistical nature of the estimation process� not
every feature is detected from all positions� but it can
be seen that the algorithm has a reasonable success rate
at �nding the same feature form di�erent positions� In
the experiment conducted� �� features could be detected
from all � positions� This would provide an extremely
useful fuel source for matching algorithms� on which mo�
bile robot localization and map building could be based�

�due to the �nite resolution of the ladar� features were consid�
ered to coincide� if they were within a m distance of each other�
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Figure ��� � sigma bounds and range readings when
scanning a cluster of trees �at A�� a jagged cli� face
�at B�� a large circular enclosure �at C� and a wall �at
D�� The circles represent detected features�

� Summary

A feature detection algorithm has been derived and
demonstrated which is speci�cally aimed at �nding fea�
tures from scanning range �nders� on�line� This tech�
nique has the advantage of allowing all kinds of surfaces
to be used for edge detection�
This !adaptive� model was implemented in discrete

time EKF recursive form� so that the e�ect of sen�
sor measurement noise� when the range variances are
known� on the detection of features is minimized� Re�
sults were demonstrated in which features were detected
at relatively large distances �� ��m� with ladar range
data in outdoor environments� Since the detector was
successful at �nding the same features from di�erent
sensor locations� the algorithm provides the potential
for algorithms to match such features for navigation pur�
poses in general outdoor environments�
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