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Abstract— Unmodeled systematic and nonsystematic errors in robot 
kinematics and measurement processes often cause adverse effects in 
several autonomous navigation tasks. In particular, accumulated 
sensor biases can render simultaneous localization and mapping 
(SLAM) algorithms of autonomous vehicles to perform very poorly 
especially in large unexplored terrains including cycles, as a result of 
the estimator divergence and inconsistency. One way to deal with 
this problem is the accurate modeling and precise calibration of 
sensors. However this may add up to longer setup and calibration 
times.  Even after accurate calibration and modeling, sensor 
calibration may often subject to drifts, rendering the efforts 
ineffective. Therefore, the correct and effective way to deal with this 
problem is explicit estimation of these parameters with other states.  
In this work we address the estimation theoretic sensor bias 
correction problem in SLAM using a simple unified framework and 
establish theoretically, the behavior and properties of the solution 
with special consideration to diminishing uncertainty, rates of 
convergence and observability.   

Index Terms – localization, mapping, convergence 

I.  INTRODUCTION  
The simultaneous localization and mapping (SLAM) is 

still considered as one of the key challenges in achieving truly 
autonomous navigation capability for mobile platforms. The 
main goal of the SLAM problem is to investigate whether an 
autonomous vehicle starting from an unknown location in an 
unknown environment could build a map incrementally with 
the help of its sensors whilst simultaneously using that map to 
localize itself with reference to a global reference frame and 
navigate in real time.  Application of SLAM for robot 
localization is quite important in several instances where 
global positioning systems (GPS) fail as a result of multipath 
effects of local terrain, periodic signal blockage by foliage, 
places having a restricted view of the sky, hilly terrain, partial 
satellite occlusion and active RF jamming. Demand for 
deploying SLAM is very high in number of outdoor 
applications, where autonomous exploration is to be carried 
out in completely unstructured and unexplored terrains having 
varying environmental conditions. Military reconnaissance, 
and surveillance, under water exploration, planetary 
exploration, mining, cargo handling and surveying are heading 
the list among several others. Self and Cheeseman [1], were 
the first to emphasize the importance of maintaining map 
vehicle correlations in SLAM and first to introduce the widely 

used Extended Kalman Filter (EKF) based stochastic mapping 
framework. This formulation represents the robot pose, 
landmark or feature locations and their uncertainties in a 
consistent probabilistic framework.  This was followed by the 
work of Mourtarlier and Chatila [3], Dissanayake et al. [2], 
work on visual navigation by Ayache and Faugerras [4] and 
more recent probabilistic and particle filter based methods [5], 
[6] and [7]. 

This work incorporates the feature based estimation 
theoretic EKF/stochastic mapping framework [3] for the 
purpose of formulating and studying the sensor and control 
bias estimation and compensation problem in detail. 
Nevertheless the framework has several shortcomings. It 
suffers from the inconsistent treatment of nonlinearities and 
susceptible to data association errors at large. Further, the 
propagation of sensor uncertainties due to systematic and 
nonsystematic errors accentuate the problems and often results 
in inconsistent and inaccurate map.  As more and more 
features are added to the map, the existence of map vehicle 
correlations result in the spread of bias errors throughout the 
map causing divergence and instability in EKF. [2] Nonlinear 
transformations in the EKF also cause the Gaussian 
assumptions in the measurement and process models invalid, 
biased or underestimated. Persistent and slowly varying biases 
that exist due to modeling errors, sensor biases and imperfect 
calibrations also contribute to map divergence. In small scale 
SLAM implementations, it has been demonstrated that by 
adding more stabilizing process, non-linearity in state and 
measurement models can be offset. [1], [3] However, this will 
not always ensure consistent results in the presence of large 
sensor and control input biases, inevitably present in practical 
situations such as traversing large loops and revisiting (loop 
closing). [8] Thus, bias and modeling offsets [9], [10] and 
their cumulative effects cause significant problems in large-
scale outdoor SLAM implementations. Furthermore, the bias 
errors impact tracking accuracy and data association 
significantly.  

 There are several bias estimation methods such as [11], 
[12] and [13] in the literature.  However in this work, we have 
used the augmented state vector method [11] because of its 
simplicity and its similarity to the structure of SLAM’s map 
augmented state vector. Since the number of bias terms is very 
small compared to the total number of state variables in 
SLAM, separate bias estimation methods such as [12] and [13] 



are not used here as there is no significant increase of SLAM 
complexity by augmenting the SLAM state vector by 
comparatively few bias terms.  The work presented here, 
analyses the properties of estimation theoretic bias estimation 
problem in SLAM using a class of linear process and 
observation models and verifies the established properties in a 
more general SLAM framework having all nonlinear process 
and observation models. 

II. SENSOR AND INPUT BIAS ESTIMATION 

A. EKF Based SLAM 
 The basic feature based EKF/SLAM framework [1] 

uses a map augmented state vector X,  consisting of 
concatenated 2D landmark position vectors, mk (known as the 
map) and the vehicle pose,  kx  at time k as follows. 

( )X = x m
TT T

k kk  
                                (1) 

Here 1 1 2 2[ ... ] ,m          k k k k k k T
k n nx y x y x y=  the vehicle pose 

[ ]kx   T
k k kx y θ=  with ,kx  ky  and kθ  denoting position 

coordinates and heading of the vehicle (middle of the rear 
axel) and [ ] , 1,2...,  k k T

i ix y i n=  denoting the absolute feature 
position vectors with respect to a global coordinate frame. In 
general, the motion model of the vehicle is nonlinear and can 
be represented in closed form as;  

-1 -1( , ) ( )kx f x u vk k k= +                         (2)  

Where, -1 1 1[ ]u  T
k k ku γ− −= is the control input vector at time 

k-1 comprising of, the speed input, 1ku −  and the steering angle 
input, 1kγ −  and ( ) (0, (k)).v Qvk N∼  Assuming static 
landmarks, the map process model is: 

 -1m mk k=                                     (3) 

Assuming a typical range bearing sensor such as SICK LMS 
290 laser measurement system (LMS), the observation model 
is represented by  

( ) ( , ) ( )z h x m wk kk k= +                      (4) 

Where, ( ) (0, ( ))w Rk N k∼  When the composite state vector 
covariance is ( | )P k k  and the observation prediction is 

( | 1)z k k −�  then the EKF predictor equations are as follows: 

-1 -1 1( | 1) ( ( , ))X f x u m
TT T

k k kk k − − =           (5) 

( | 1) ( 1 | 1) ( )P FP F QTk k k k k− = − − +               (6) 
( | 1) ( , )z h x mk kk k − =�                         (7) 

Where F is the Jacobian ( )/f xk∂ ∂  of the process model and 
( )Q k  is the composite process noise covariance matrix. When 

true observations, ( )z k  are available at time k, and after 
correct observation to feature associations are resolved using 

an appropriate data association algorithm, the EKF update is 
done as usual using the following equations. 

( ) ( ) ( | 1)e z zk k k k= − −�                              (8) 
( | ) ( | 1) ( ) ( )X X K ek k k k k k= − +                      (9)  

( | ) ( | 1) ( ) ( ) ( )P P K S KTk k k k k k k= − −                (10) 

Where, ( )e k  is the observation innovation, ( )S k  is its 

covariance matrix and 1( ) ( | 1)K P H STk k k −= −  is the 
Kalman gain and ( | 1)H h X k k= ∂ ∂ −  is the measurement 
Jacobian. Landmark track initiation, maintenance and deletion 
is carried out as in [2]. 

B. Bias Estimation  
Work by Clark [14] and Williams [11] are examples of 

earlier attempts to estimate vehicle parameters and input 
biases in the context of SLAM. In our work, a simplified 
rigorous framework is formulated for estimating control input 
and sensor biases present in SLAM algorithms in a consistent 
manner. 

For simplicity, the derivation is given for a single sensor 
with range and bearing biases, together with control input 
biases, without loosing the generality of including many 
sensors. Let the lumped biases in the input vehicle velocity, 
steering angle and their covariance values be )(kub , )(kbγ , 

2
ubσ  and 2

bγσ  respectively. Should these bias parameters be 
time varying it is straightforward to model their time varying 
characteristics in the given formulation. Suppose, the single 
sensor’s (possibly a laser scanner) biases in the range, bearing 
and their covariance values be ( ),br k  ( ),b kα  2

rbσ  and 2
bασ  

respectively, a vector of biases, ( )xb k is formed by 
concatenating all the biases as follows.  

[ ]( ) ( ) ( ) ( ) ( )x T
b b b b bk u k k r k kγ α=             (11)   

The new composite state vector, X  including the bias vector 
is formed in the following manner. 

( ) ( )X = x x m
b

TT T T
k kk k 

                        (12) 

The process model of the map, (3) remains unchanged, while 
the new vehicle model, (13) and the bias model (14) take the 
following forms. 

-1 -1( , , ( 1), ( 1)) ( )x f x u vk k k b bu k k kγ= − − +      (13) 
( ) ( 1) ( )x x vb b bk k k= − +                      (14) 

Here, ( )2 2 2 2( ) ~ , ( , , , ) .v 0b ub b rb bk N diag γ ασ σ σ σ The observation 

model is also modified to incorporate sensor biases as follows. 

( ) ( , , ( ), ( )) ( ) ( )z h x m w vk k b b sk r k k k kα= + +         (15) 

Here, 2 2( ) ~ ( , ( , ).v 0s rb bk N diag ασ σ Now the estimation of 
vehicle pose, map and the bias parameters proceed in the same 
manner as described for without biases given by equations (1) 
to (10). 



III. PROPERTIES OF THE BIAS ESTIMATION PROBLEM IN 
SLAM 

In this section we address three properties of the bias 
estimation in SLAM. They are the observability, convergence 
and stability. These issues are vital for a viable and robust 
estimation algorithm. A class of linear process and 
observation models [2] is used in the analysis. 

A. Diminishing Uncertainty 

In this work, we use linear and synchronous models as in [2] 
and [15] and assume constant bias vectors to investigate the 
uncertainty variation characteristics of sensor bias estimation 
in SLAM with following modifications. Linear vehicle model 
with input bias can be expressed as; 

-1 ( ) ( )) ( )x F x B (u u vk v k v v bk k k= + + +          (16) 

where, ( ) ( , (k)),v 0 Qvk N∼  Bv  is the transition matrix of the 
control vector and the vectors ( )uv k  and ( )ub k  denote the 
vehicle control input and the input bias vector. The process 
model of the ith landmark vector ( ) [ ]L  k k T

i i ik x y= is given by, 
( ) ( 1), 1,2,.....,L L  i ik k i n= − =                 (17) 

where n is the number of landmarks. When ( )bs k is the bias 
vector of the sensor used to obtain landmark observations and 
assuming negligible noise injections into the bias vector, the 
evolution of bias vector is, 

( ) [ ( ) ( )] ( 1)x u  s xT T T
b b b bk k k k= = −               (18) 

Therefore the modified composite state vector is given by, 

1( ) [ ( ) ( ) ( ).... ( )]X x  u  s  L LT T T T T T
k b b nk k k k k=           (19) 

Linear observation model, when observing the ith landmark:  

( ) ( ) ( ) ( ) ( ) ( )Lz H L H x s w
i i v k bk k k k k k= − + +      (20) 

Where ( )LH
i

k  and ( )Hv k  are the parts of the observation 

model relating to the ith landmark being observed and, with 
respect to the vehicle pose vector, and ( ) ~ ( , ( )).w 0 Rk N k  Let 

( )H k  be the total Jacobian corresponding to the augmented 
state vector ( ),X k  then the measurement prediction is given 
by; 

ˆ( | 1) ( ) ( | 1)z H Xk k k k k− = −                (21) 

Then the consequent prediction and update equations take 
the form of the equations (5) to (10). Now the composite 
covariance matrix, ( | ),P k k is denoted by (22), where 
subscripts m, v, u and s denote the entire map, the vehicle, the 
input bias vector and the sensor bias vector respectively. In (6) 
and (22), the process model  F and matrix partitions Fb  of  F, 

( | )Pbb k k  of ( | )P k k  and ( | )Pbm k k  of  ( | )P k k can be 
defined as (23), (24), (25) and (26). 

( | ) ( | ) ( | ) ( | )

( | ) ( | ) ( | ) ( | )
( | )

( | ) ( | ) ( | ) ( | )

( | ) ( | ) ( | ) ( | )

P P P P

P P P P
P

P P P P

P P P P

vv vu vs vm
T
vu uu us um
T T
vs us ss sm
T T T
vm um sm mm

k k k k k k k k

k k k k k k k k
k k

k k k k k k k k

k k k k k k k k

 
 
 

=  
 
 
 

 (22) 

F 0
F

0 I
b bm

T
bm mm

 
=  
  

                            (23) 

F B 0

F 0 I 0

0 0 I

v v vs
T

b vu uu us
T T
vs us ss

 
 

=  
 
 

                         (24) 

( | ) ( | ) ( | )

( | ) ( | ) ( | ) ( | )

( | ) ( | ) ( | )

P P P

P P P P

P P P

vv vu vs
T

bb vu uu us
T T
vs us ss

k k k k k k

k k k k k k k k

k k k k k k

 
 

=  
 
 

        (25) 

( | ) ( | ) ( | ) ( | )P P P P
TT T T

bm vm um smk k k k k k k k =       (26) 

Where 0bm is a null matrix having number of rows equal to 
that of Fb  and number of columns equal to the dimension of 
the map vector. The matrices, ,Iuu Iss and Imm are identity 

matrices of dimension 2(dim ))(u b , 2(dim ))(s b and 
2(dim ))(m  respectively. ,0vs 0vu  and 0us  are null matrices 

having appropriate dimensions. From (6), prediction of the 
composite state vector covariance can be determined as; 

( | 1)

( 1| 1) ( 1) ( 1| 1)

( 1| 1) ( 1| 1)

P

F P F Q F P

P F P

k k
Tk k k k kb bb b b bm

T Tk k k kmmbm b

−

 − − + − − −
 =  − − − −  

(27) 

where, ( 1)Q k −  represents the covariance of the noise 
injections from the vehicle motion and bias terms. Expand the 
first sub matrix partition of (27) as follows; 

4

5 6

( 1| 1) ( 1)
1 4 5

2 6

3

P P P

F P F Q P P P

P P P

T

T T

Tk k kb bb b

 
 

− − + − =  
 
 

  (28) 

where, 

1 ( -1| -1) ( -1| -1) ( -1| -1)

( -1| -1) ( -1| -1) ( )

P F P F +F P B +B P

      B P B +F P Q

T T
v vv v v vu v v uu

T
v vu v v vu v

k k k k k k

k k k k k

=

+ +
(29) 

2 ( 1 | 1)P Puu k k= − −                               (30) 

3 ( 1 | 1)P Pss k k= − −                                (31) 

4 ( 1 | 1) ( 1| 1)P F P B Pv vu v uuk k k k= − − + − −           (32) 

5 ( 1 | 1) ( 1 | 1)P F P B Pv vs v usk k k k= − − + − −            (33) 

6 ( 1 | 1)P Pus k k= − −                               (34) 



As (0 | 0),P ( )Q k  and ( )R k are positive semi definite (PSD) 
matrices, by the properties of PSD matrices [16], ( )S k and 

( ) ( ) ( )K S KTk k k  are also PSD matrices. Hence from (10); 

( ) ( )det ( | ) det ( | 1) ( ) ( ) ( )P P K S KTk k k k k k k= − −    (35) 

det( ( | )) det( ( | 1))P Pk k k k≤ −                     (36) 
Since any principal sub matrix of a PSD matrix is also a PSD;  

det( ( | )) det( ( | 1))P Puu uuk k k k≤ −                  (37) 
 det( ( | )) det( ( | 1))P Pss ssk k k k≤ −                   (38)  

But from (28) to (33) ( | 1) ( 1 | 1)P Puu uuk k k k− = − −  and 
( | 1) ( 1 | 1)P Pss ssk k k k− = − − . Thus from (37) and (38); 

det( ( | )) det( ( 1 | 1))P Puu uuk k k k≤ − −                 (39) 
det( ( | )) det( ( 1| 1))P Pss ssk k k k≤ − −                  (40) 

Since the determinant of a matrix is proportional to its 
volume, determinant of covariance matrices indicate the 
volume or size of their uncertainty ellipsoids and therefore it 
can be concluded that the uncertainty of bias parameters 
cannot increase in an update of the SLAM algorithm. 

B. Rates of Convergence 

The rate of convergence of uncertainties associated with the 
bias estimation in SLAM is studied by using the one 
dimensional robot (monobot) SLAM algorithm. [17], [18] 
Here the one landmark continuous SLAM is considered for 
the analysis as follows. 

[ ]

1 1

( ) ( )0 1 0 0 1
( ) ( )0 0 0 0 0

( ) ( )
( ) ( )0 0 0 0 0
( ) ( )0 0 0 0 0

b b

b b

x t x t
u t u t

u t v t
s t s t
L t L t

       
       
       = + +       
       
        

�
�
�
�

 (41) 

x(t), ( ),bu t ( ),bs t 1( )L t  and ( )u t denote the position of the 
monobot,  bias of the speed sensor, bias of the range sensor, 
landmark position, and speed input in the continuous space at 
time t and 2( ) ~ (0, ).v t N q  The state vector of 1D SLAM is 

given by 1( ) [ ( ) ( ) ( ) ( )]x T
b bt x t u t s t L t= and the 

observation model is given by 

( ) ( ) ( )z Hxt t w t= +                             (42) 

where 2( ) (0, ),w t N r∼ 2R r=  and [ ]1 0 1 1H = −  Let  

[1 0 0 0] ,G T=  

0 1 0 0
0 0 0 0

,
0 0 0 0
0 0 0 0

F

 
 
 =
 
 
 

 2 2 2(0) (0, , , )P bu bsdiag rσ σ= ,  

where (0)P  is the initial covariance matrix of the model (41) 
and I  is an identity matrix of size 4, the covariance matrix, 

( )P t  of the state vector in (41) is governed by the Riccati 
equation;  

-1( ) ( ) ( ) ( ) ( )P FP P F GQG P H R HPT T Tt t t t t= + + −�    (43) 

The solution to this Riccati equation [19] is of the form 
( ) ( ) ( ),-1P M Nt t t=  where ( )M t  and ( )N t are given by the 

following equations, 
( )( )
( )( ) -1

F GQG MM
NN H R H -F

T

T T

tt
tt

    
=     
      

�
�             (44) 

(0) (0)
(0)

M P
N I
   

=   
   

                              (45)  

Then the characteristic equation ( )C t  of the system and the 
thm  row thn  column element ( , )P m n  of ( )P t  for all m and n 

can be obtained by solving  (44) and (45) as follows. 
2 2 2 2 2

2 2 2 2

2 2 2 2 4 2 2 2 2

( ) ( )(( 1) ( 1) )

2 ( )(1 )

(1 )( )

C

                 

                        

t
bu

t
bu bs

t
bu bs bs bu

t r q t q e

rq r e

e tq q r q

τ

τ

τ

σ τ τ

σ σ

σ σ σ σ

−

−

−

= + + + −

− + − +

− + −

       (46) 

( ) ( )3 2 2 2 2 2 2(1,1) 1 ( ) ( ) 2( )(1 ) (1 )P C t t
bu bst q r t q r e rq eτ τσ σ − −= + + − + −

   (47) 
( ) ( )2 3 2 2 2 2(1,2) 1 ( ) 2( )(1 ) (1 )P C t t

bu bst q r r e rq eτ τσ σ − −= + − + − (48) 

( ) 2 3 2 2 2(1,3) 1 ( ) ( )(1 )P C t
bs but q r t q e τσ σ −= + −          (49) 

( ) 3 3 2 2 2(1, 4) 1 ( ) ( )(1 )P C t
but q r t q e τσ −= + −             (50) 

( ) ( )2 2 4 2 2 2 2(2,2) 1 ( ) ( )(1 ) (1 )P C t t
bu bst r q r e rq eτ τσ σ − −= + − + − (51) 

( ) 3 2 2 2(2,3) 1 ( ) (1 )P C t
bu bst q r e τσ σ −= −                 (52) 

( ) 3 3 2 22, 4) 1 ( ) (1 )P C t
but q r e τσ −= −                    (53) 

( ) 2 2 2 2 2 2 2

2 3 2 3 2 2 2

(3,3) 1 ( ) { ( )(1 )

2 (1 ) ( )(1 )}

P C

             

t
bs bu bu

t t
bu bu

t r q t q e

r q e rq t q e

τ

τ τ

σ σ σ

σ σ

−

− −

= + − − −

− + + +
 (54) 

( ) 2 2 2 2

2 2 2

(3,4) 1 ( ) {2 (1 )

( )(1 )}

P C

                             

t
bs bu

t
bu

t rq r e

rq t q e

τ

τ

σ σ

σ

−

−

= −

− + −
       (55) 

( ) 2 2 2 2 2 2 2 2 2

2 2 2 3 2 2 2

(4,4) 1 ( ) { ( )(1 )

2 (1 ) ( )(1 )}

P C

                   

t
bu bs bs bu

t t
bu bs bu

t r q t q r e

rq e rq t q e

τ

τ τ

σ σ σ σ

σ σ σ

−

− −

= + − − −

− + + +
(56) 

Here, q rτ =  and 1 τ is the time constant of the model. All 
other terms of ( )P t can be derived from (46) to (56) using the 
symmetry of  ( ).P t  The above equations show that the 
covariance terms of ( )x t  converge exponentially initially at a 
time constant of 1 τ and then asymptotically to the steady 
state covariance according to the expressions, (46) to (56). 
The above relatively slow asymptotic convergence of the 
estimated uncertainty terms in the SLAM bias estimator is one 
of the reasons for the poor performance of the estimation 
algorithm. This convergence rate is not affected by the biases 
or their uncertainties and depends only on the information 
available to the filter as in standard EKF SLAM. [17]. The 
steady state covariance of the ( )x t , ( )P ∞  can be obtained 



from (46) to (56) by applying the limit as .t → ∞  
 

( )

( )
( )

2 2 2 3

2 2 2 2 2*

3 2 2 2 2

2( ) 0

0 0 0 01( )
0

0

P

bs bs

bs bs bs

bs bs

qr r rq qr qr

qr r rq r

qr r r rq

σ σ

σ σ σσ

σ σ

 + +
 
 

  ∞ =   + − 
 
 − +  

(57) 

 

Where * 2 2( 1) .bsrσ τ σ= + +  Thus we can conclude (1). The 

rate of convergence of state uncertainties does not depend on 
the bias parameters or their initial uncertainty. But this 
depends only on the amount of process noise and the amount 
of information available to the estimator, as in standard 1D 
SLAM. (2) In the limit, the bias associated with the vehicle 
speed is perfectly known. (3) In the limit, the state 
uncertainties are affected only by the initial sensor bias 
uncertainty. They do not depend on the initial vehicle speed 
input bias uncertainty. 

C. Observability of the Estimator 

In full SLAM, because of the growing correlations among the 
constituent states and as a result of partial observability [18], 
the full reconstruction of the map state vector is not possible 
with typical measurement models. The SLAM with bias 
estimation also suffers from the above and also shows 
marginal stability as a result of the filter’s steady state 
dependence on initial bias uncertainty. We also analyze the 
observability of 1D SLAM for the verification. The angle ψ  
between the controllable and observable subspaces is an 
indication of the closeness of observable states from fully 
revising the process state. This angle is also a measure of 
partial observability of the problem. For this analysis we use 
the discrete versions of the n landmark SLAM process and 
observation models given in (41) and (42). Let O and C  
denote the observability and controllability matrices of the 
above system. Let Im(X) denote a basis of the image of the 
space specified by X.  
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Thus using the vector transformations and projections we can 
derive the angle between these subspaces, ψ  as; 

1cos
2 1

n
n

ψ −  
=   + 

                       (60) 

Since ψ  is a monotonically decreasing function of n, as the 
number of landmarks increases, the observable subspace gets 
closer to the controllable part of the state space. However ψ  

cannot be reduced below 4.π  Thus it is important to propose 
methods of providing full observability to the bias estimation 
problem in SLAM.  
In the 2D nonlinear SLAM, can be verified by symbolic 
manipulation of models (11) to (15) and the observability 
Grammian, that the SLAM with sensor bias estimation 
becomes fully observable when observing more than one 2D 
known landmark and observing the landmarks which are in 
the state vector at the same time. Thus it is important to note 
that in all the simulations carried out in section IV, the full 
observability of the problem is preserved by always observing 
two known 2D landmarks. 
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Figure1 – Figure 1 (a) shows the map divergence in the case of large scale 
SLAM in loop closing experiments. Dashed line marks the true path robot 
should travel and the thick line is the estimated robot trajectory without bias 
compensation. Figure 1 (b) represents the same experiment in loop closing 
with on line bias compensation. Figures 1 (c) and 1(d) show the 2D SLAM, 
localization error in x and heading. Figures 1(e)-(h) show sensor bias 
estimates. Dashed lines in Figures 1-(c) and (d) show 2 sigma bounds. Thick 
lines Figures 1(e)-(h) show the estimated biases and dashed lines show the 
true biases. 
 
 
 



 
Fig 2 – The mobile robot platform 

IV. SIMULATIONS AND EXPERIMENTS 

Fig 1 shows SLAM simulation and experimental results 
indicating SLAM with bias estimation. Results of Fig 1 (a) 
and Fig 1 (b) indicates the outdoor SLAM experiments done 
in a campus neighborhood (over 1.1km stretch) are obtained 
from experiments conducted at a campus neighborhood with 
the help of GENOME (Generic Outdoor Mobile Explorer), a 
car like mobile robot. (Fig. 2.-(a)) equipped with laser 
measurement system (SICK LMS 290) and encoders. The 
results show the improvements in bias compensation in SLAM 
when using biased sensors. Fig 1 (c), (d), (e), (f), (g) and (h) 
show simulations done in a similar setting with a robot 
navigating in a circular path of 20m radius. Simulations are 
done for 2D SLAM with biased sensors (LMS range bias 
0.5m, angle bias 2 degrees, speed input bias 0.25m/s and 
steering angle bias 1 degree and the random walks in the 
above biases are taken as 0, 0, 0.2 , m hr  02 hr )  

V. CONCLUSIONS AND FUTURE WORK 

 A detailed theoretical study of the estimation theoretic 
sensor bias correction problem in SLAM is carried out and the 
properties of the solution established for the first time. It is 
established that the sensor bias estimation problem in SLAM 
in fact has a solution, which converges with diminishing 
uncertainty over the time. Conditions for convergence and 
observability problem are also discussed. Conditions that 
affect the estimation problem are also verified with 
simulations and experimental results. The nonlinearities in the 
process and observation models, asynchronous nature of 
observations and the violation of flat ground assumption, 
result in the non-smooth variation of bias error characteristics. 
In general, detailed study of the bias correction problem 
highlights the importance of bias correction for successful 
implementation of large scale SLAM involving large loops 
using low cost, poor quality sensors. The above preliminary 
studies are a prelude to the study of the much complex 
problem of SLAM using low cost inertial sensors. This study, 
which is of paramount importance in various large scale 
outdoor robotics applications including servicing, agricultural 
and rescue robots, is pursued as future work based on the same 
theoretical principals developed. 
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