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Abstract—This paper presents an alternative formulation
for the Bayesian feature-based simultaneous localisation and
mapping (SLAM) problem, using a random finite set approach.
For a feature based map, SLAM requires the joint estimation
of the vehicle location and the map. The map itself involves the
joint estimation of both the number of features and their states
(typically in a 2D Euclidean space), as an a priori unknown map
is completely unknown in both landmark location and number.
In most feature based SLAM algorithms, so-called ‘feature
management’ algorithms as well as data association hypotheses
along with extended Kalman filters are used to generate the joint
posterior estimate. This paper, however, presents a recursive
filtering algorithm which jointly propagates both the estimate
of the number of landmarks, their corresponding states, and
the vehicle pose state, without the need for explicit feature
management and data association algorithms.

Using a finite set-valued joint vehicle-map state and set-valued
measurements, the first order statistic of the set, called the
intensity, is propagated via the probability hypothesis density
(PHD) filter, from which estimates of the map and vehicle can be
jointly extracted. Assuming a mildly non-linear Gaussian system,
an extended-Kalman Gaussian Mixture implementation of the
recursion is then tested for both feature-based robotic mapping
(known location) and SLAM. Results from the experiments show
promising performance for the proposed SLAM framework,
especially in environments of high spurious measurements.

Index Terms—Random Finite Set (RFS), Bayesian Filtering,
SLAM

I. INTRODUCTION

The feature-based (FB) SLAM scenario is a vehicle moving
through an environment represented by an unknown number
of features. The classical problem definition is one of “a
state estimation problem involving a variable number of
dimensions” [1]. The vehicle is assumed to acquire absolute
measurements of its surrounding environment using on board
range-bearing measuring sensors (for the planar case). The
SLAM problem requires a robot to navigate in an unknown
environment and use its suite of onboard sensors to both
construct a map and localize itself within that map without
the use of any a priori information. This requires joint
estimates of the three dimensional robot pose, the number
of features in the map as well as their two dimensional
Euclidean co-ordinates. For a real world application, this
should be performed incrementally as the robot maneuvers
about the environment. As the robot motion introduces error,
coupled with a feature sensing error, both localistion and
mapping must be performed simultaneously [2]. For any

given sensor, an FB measurement is subject to detection
and data association uncertainty, spurious measurements and
measurement noise, as well as biasses.

To encapsulate the inherent measurement and vehicle un-
certainty in a SLAM system, Bayesian filtering solutions have
become extremely popular in recent years [3]. The majority
of proposed algorithms, stemming from the seminal work
[2], adopt an augmented state containing both the vehicle
pose estimate and the estimate of the map. Kalman based
solutions are then applied to jointly estimate the vehicle pose
and map, whilst maintaining the state correlations. Under
Gaussian noise assumptions, the Kalman filter produces the
optimal minimum-variance Bayesian estimate of the joint-
vehicle map state. The example discussed in [2] had a map
containing features of unity detection probability, assumed
the measurement-feature association was known, and that the
sensor reported no spurious measurements. With these strict
assumptions, the Kalman based SLAM estimate is indeed
Bayes optimal. This work was incorporated into multiple
Kalman-based solutions to the FB-SLAM problem [3].

Sequential Monte Carlo (SMC) solutions to Bayesian
SLAM also gained popularity [1] through the use of Rao-
Blackwellised particle filters. FastSLAM [4] displayed im-
pressive results by sampling over the vehicle trajectory and
applying independent Kalman filters to estimate the location
of the hypothesised map features. By conditioning the map
estimates on the history of vehicle poses, a conditional mea-
surement independence is invoked which allows the correla-
tions introduced in [2] to be discarded. A Gaussian mixture
solution to the Bayesian SLAM problem was also described in
[5] which approximated both the transition and measurement
densities as Gaussian mixtures and propagated the joint state
through a Bayes recursion.

Current existing solutions to the FB-SLAM problem can
be regarded as being vector-based algorithms. That is, both
the joint vehicle-map state and the measurements are modeled
as vectors. Since the order of elements in a vector is fixed,
such a representation implies that the order of measurements
received at any given time, are from the same order of features
in the map state. That is, there is assumed to be no data
association uncertainty. While vector state representation has
never before been highlighted as the source of this oversight,
the SLAM community has long acknowledged this drawback,
and numerous solutions have been proposed to solve the



measurement-feature association problem [6], [7], [8]. The
presence of detection uncertainty and spurious measurements
have also been long acknowledged, and subsequently feature
initialisation and termination algorithms are frequently incor-
porated into the vector-based SLAM algorithm [3]. Again,
the paper emphasises for the first time that these are required
due to the inability of a vector representation to incorporate
uncertainty in the number of dimensions, and highlights that
such methods (which are independent of the filter recursion)
compromise filter performance. As shown in this paper, this
can result in filter divergence and large mapping error, espe-
cially in scenarios of high clutter and large data association
ambiguity. Through the re-formulation of the classical FB-
SLAM problem, and by explicitly incorporating the problem
of a variable number of dimensions into the filter recursion,
increased robustness in noisy scenarios is possible.

The latest emerging multi-target tracking algorithms [9]
[10] represent the states and measurement as finite sets.
Random finite sets (RFSs) are then used to model uncer-
tainty in both the number of states/measurements as well as
their individual values. A finite set-valued measurement, for
example, allows for the inclusion of spurious measurements
directly into the measurement equation which is then the
union of the set-state dependant measurements (as is the case
in the classical Bayesian SLAM formulations) and the set of
spurious measurements. A finite set-valued map state can be
made up of the set union of the existing features and the
new features which may appear in the map due to the motion
of the robot. In [9], the mathematics are established for a
finite set-valued Bayesian filtering formulation of the multi-
target tracking problem, where the number of targets and their
corresponding states can then be jointly estimated.

This paper subsequently casts the FB-SLAM problem into
a random set theoretic filtering problem that incorporates the
joint estimation of the vehicle pose, feature number and corre-
sponding feature locations. The paper is organized as follows:
Section II firstly outlines the general vector-based Bayesian
SLAM formulation. It then highlights the short comings of
the classical method of modeling the feature measurements in
section II. The RFS-SLAM formulation is then introduced in
section III. Section IV introduces an augmented joint vehicle-
map RFS to incorporate vehicle location uncertainty. A first-
order approximation (the probability hypothesis density, or
PHD) of the augmented state recursion is then presented, and
the PHD-SLAM filter is introduced. Using Gaussian noise
assumptions, an extended-Kalman Gaussian Mixture imple-
mentation is developed in section V. This implementation
accounts for the non-linearity in the measurement equation
and jointly estimates the feature number in the map, their
corresponding states and the vehicle pose. Furthermore, this
can be achieved without the need for explicit data association
decisions and/or feature management algorithms. Simulated
mapping and pose estimation results are shown in section
VI where the proposed GM-PHD SLAM filter is tested on
simulated data with high spurious measurements. Results
show the efficacy of the proposed framework for solving the

Bayesian SLAM problem.

II. GENERAL FORMULATION OF THE BAYESIAN
FB-SLAM PROBLEM

The aim of FB-SLAM is to jointly estimate the q map
feature locations, m1, . . . ,mq as well as the vehicle trajectory
xk =[x0, . . . , xk], given the history of vehicle control inputs,
uk−1 = [u0, . . . , uk−1], the history of sensor measurements
Zk = [Z0, . . . , Zk] and the initial vehicle state x0. In this
work, the measurement, Zk = {z1

k, . . . , z
z(k)
k }, consists of

z(k) range-bearing measurements registered by an onboard
exteroceptive ranging sensor. The map M = {m1, . . . ,mq}
is a priori unknown and consists of features at unknown
Euclidean co-ordinates, m1, . . . ,mq. Furthermore, the total
number of features in the map, q, is also a priori unknown,
and estimating M involves jointly estimating q as well as
their corresponding states. Therefore at each time step k, the
joint posterior probability density (pdf) of the map and vehicle
trajectory can be written (assuming that such a density exists)
as,

pk(xk,M |Zk, uk−1, x0). (1)

From an optimal Bayesian perspective, the posterior probabil-
ity density should capture all relevant statistical information
about the vehicle state and the map. The posterior density
can, in theory, be propagated in time via the Bayes recursion:

p(xk,M |Zk, uk−1, x0) =
g(Zk|M,xk)p(xk,M |Zk−1, uk−1, x0)∫ ∫

g(Zk|M, xk)p(xk,M |Zk−1, uk−1, x0)dxkdM
(2)

where,

p(xk,M |Zk−1, uk−1, x0) =∫
f(xk|xk−1, uk−1)p(xk−1, M |Zk−1, uk−2, x0)dxk−1.

The motion of the vehicle is modeled as a first order
Markov process with transition density f(xk|xk−1, uk−1).
This formulation can be easily extended to dynamic maps
and multiple sensors. For clarity of exposition, the static-map-
single-sensor case is adhered to.

In the general Bayesian formulation of SLAM [3], eqn.
(1) is the joint probability density of a random vector
containing the map states, m1, . . . , mq, concatenated with
the vehicle state, xk. In a practical scenario at each time
instance, with a limited sensor field of view (FOV), the map
Mk = [m1, · · · ,mq] comprises the states of the q features
assumed to exist in the map (which have passed through the
FOV), where q ≤ q. At each time, estimates of the joint state
can be obtained using MAP or MMSE estimation criterion
[2]. As the measurement is also a vector of individual range-
bearing readings, a direct implementation of this Bayesian
recursion in its classical vector form, implicitly assumes that
the order of the measurements equals the order of the features
in the map vector. This is not a new observation and has
resulted in the development of numerous data association



algorithms to solve the measurement-feature correspondence
problem [7], [6], [8]. These are usually ‘inserted’ in to
the Bayesian recursion before performing the update of
eqn.(2). Furthermore, to estimate the number of observed
features, q, so called ‘feature-management’ algorithms are
used which maybe incorporate the data association decisions
[6] directly, or adopt discrete Bayesian filtering methods
from occupancy grid mapping algorithms [4]. These SLAM
approaches generally either assume a Gaussian system which
leads to Kalman based solutions or employ Sequential Monte
Carlo methods which avoid the restrictive uni-modal Gaussian
approximations and potential linearisation errors.

From a Bayesian perspective however, it is argued in this
work, that the vector-based density of (1) lacks Bayes opti-
mality for the SLAM problem, as some aspects of the system
uncertainty are overlooked. From an intuitive perspective, this
is evident from the need to include measurement-feature hy-
pothesis decisions and feature validity checks to estimate the
number of features, q. Independent (from the filter recursion)
routines for dealing with spurious measurements and data
association uncertainty, whilst showing promising results in
practise, compromise the Bayes optimality of the posterior
joint density. From examination of the measurement model in
the following section, further theoretical issues in the vector-
based formulation become evident.

The Random Vector Measurement Model

In SLAM, the map state at time k, Mk is assumed to consist
of q features whose states, m1, . . . ,mq , are to be estimated.
A prediction of the vehicle pose, xk, is also available from
the transition density f(·) given the control input, uk−1. The
measurement is then modeled as a vector,

Zk = h(xk,m1, . . . , mq) + wk. (3)

where h(·) is generally a non-linear function mapping the
feature and vehicle locations into the relative range and
bearing measurement, and w is a Gaussian distributed random
vector, which encapsulates the additive measurement noise.
The measurement likelihood, g(Zk|Mk, xk) is treated as the
likelihood of receiving a vector that contains q measurements,
one from each of the q features m1, . . . , mq . Examination of
the measurement model and a vector-based state, reveals an
implicit assumption that the number of features present in
Mk (but not necessarily their location) is known a priori.
Moreover, it is assumed that each feature generates an obser-
vation, and the order of the measurements is the same as the
order of the features in Mk (i.e. z1

k is from the feature at m1

etc.). Also the model of eqn.(3) has no inclusion of spurious
measurement and only accounts for measurements from each
of the features at locations, {m1, . . . , mq}, corrupted by
Gaussian noise.

Therefore, the standard measurement model used in nu-
merous Bayesian SLAM solutions, overlooks detection uncer-
tainty, spurious measurements, and measurements from newly
observed features. While the existence of such sensor uncer-
tainty has long been acknowledged by the SLAM community

[3], [4], this paper for the first time explicitly highlights the in-
abilities of the classical measurement equation to model such
uncertainties. By using finite set-valued measurements, these
uncertainties can be explicitly accounted for in the measure-
ment model and consequently encapsulate the detection and
data association sensing uncertainty directly into the resulting
filter recursion. This is not the case of filters which use the
vector-based measurement of eqn.(3). The following section
therefore outlines a set-valued Bayesian SLAM formulation,
which adopts finite set valued measurements.

III. RFS FORMULATION OF THE BAYESIAN SLAM
PROBLEM

To incorporate the fact that new features enter the map, Mk,
with time, let the map state Mk be an RFS which evolves in
time according to,

Mk = Mk|k−1 ∪Bk (4)

comprising the set union of the RFS multi-feature transition
prediction of the previous map RFS, Mk|k−1 and the RFS of
the new features at time k, Bk. These sets are assumed mu-
tually independent. Note that vector-based SLAM algorithms
do not include the possibility of new features coming within
the sensors field of view in the state transition equation. As
static features are assumed, the map set propagates in time
via,

Mk|k−1 = Mk−1.

To contend with the realistic situation of missed detections
and clutter, the measurement is also modeled as an RFS.
Given the predicted vehicle state, xk, and the map Mk, the
measurement consists of a set union,

Zk =
⋃

m∈Mk

Θ(m,xk) ∪ Ck(xk) (5)

where Θk(m,xk) is the RFS of the measurement generated
by a feature at m and Ck(xk) is the RFS of the spurious
measurements at time k. Therefore Zk consists of a random
number of range-bearing measurement in R2 where the num-
ber of detected measurement may differ from the number
of features due to potential missed detections. Eqn. (5) thus
encapsulates measurement noise, detection uncertainty and
spurious measurements, compared to the vector-based model
of eqn (3) which only considers measurement noise. It is also
assumed that Θk(m,xk), and Ck(xk) are independent RFSs.

For each feature, m ∈ M , and z ∈ Zk,

Θ(m,xk) = {z} (6)

with probability density pD(m, xk)g(z|m,xk) and
Θk(xk,m) = ∅ with probability 1 − pD(m,xk), where
pD(mq, xk) is the probability of the sensor detecting the qth

feature. pD(m,xk) is the vehicle state dependant detection
probability which is a function of the finite sensor FOV.
Using Finite Set Statistics [11], the probability density that



the sensor produces the measurement set Zk given the
vehicle state xk and map Mk at time k is then given by [9]:

g(Zk|Mk, xk) =
∑

W⊆Zk

θk(W |Mk, xk)ck(Zk −W ) (7)

with θk(·|Mk, xk) denoting the density of the RFS of observa-
tions, Θ(m,xk), generated from the features in the observed
map Mk given the state of the vehicle, and ck(·) denoting the
density of the clutter RFS, Ck. Note that the difference opera-
tion used in (7) is the set difference. The density of a random
finite set requires more general mathematical constructs than
that used for vectors [12]. θk(·|Mk, xk) describes the likeli-
hood of receiving a measurement from the elements of the
set-valued map which incorporates detection uncertainty and
measurement noises. ck(·) models the spurious measurement
rate of the sensor and is typically a priori assigned [6] [7].
Expanding the multi-target RFS Bayes recursion of [11] to
include the vehicle state, the optimal Bayesian SLAM filter
then jointly propagates the set of features and the vehicle
location according to,

p(xk,M |Zk, uk−1, x0) =
g(Zk|M, xk)p(xk, M |Zk−1, uk−1, x0)∫ ∫

g(Zk|M, xk)p(xk,M |Zk−1, uk−1, x0)dxkµ(dM)
(8)

where,

p(xk,M |Zk−1, uk−1, x0) =∫
f(xk|xk−1, uk−1)p(xk−1,M |Zk−1, uk−2, x0)dxk−1

and µ is a reference measure on the space of features. Note
that, contrary to previous SLAM formulations, M and Z
are now modeled by RFS’s. As in a direct implementation
of the vector-based Bayesian SLAM recursion of eqn.(2),
computational complexities and multiple integrals generally
lead to intractable solutions. Fortunately, approximations have
been developed in the tracking literature [9], which can be
incorporated into this RFS SLAM formulation.

IV. PROBABILITY HYPOTHESIS DENSITY (PHD) SLAM
FILTER

Instead of propagating the posterior density, the PHD filter
propagates only its first order statistical moment [9], known
as its intensity. This corresponds to the ‘expectation’ of an
RFS [12]. For an RFS Mk, with probability distribution P ,
the intensity is a non-negative function v, such that for each
region S in the space of features,

∫
|Mk ∩ S|P (dMk) =

∫

S

v(m)dm. (9)

Since, |Mk ∩ S| =
∑

x∈X 1S(x), is the number of features,
the integral of the intensity v over any region S gives the ex-
pected number of elements of Mk that are in S. Simply setting
S to be the entire mapped region an estimate of the number of
features in the observed map set, Mk, can be jointly estimated
along with their locations. The (co-ordinates of the) peaks of

the intensity are points (in the space of features) with the
highest local concentration of expected number of features
and hence can be used to generate estimates for the elements
of Mk. The integral of the PHD gives the expected number
of features and the peaks of the PHD function can be used
as estimates of their locations.

Since the intensity is the first statistic of a random finite
set, the PHD filter is analogous to the constant gain Kalman
filter which propagates the first order statistic (the mean) of
the vector-based state. However, the intensity, vk(m), contains
information on both the number of features in the map set, and
their corresponding states (along with the uncertainty in their
state estimation). Under the assumption of independent and
Poisson distributed RFS’s, a recursion for the intensity was
derived in [9]. This tracking-orientated approach, considered
only the intensity of the target (feature) RFS whereas SLAM
requires the joint estimation of both the set of features and
the vehicle state.

Expanding on [9], let ζk denote the a feature state, m,
concatenated with one of N hypothesised vehicle trajectories,
x

(n)
k

1. Conditioning each feature state, m, on the history of
vehicle poses introduces a conditional independence between
feature measurements allowing the joint states, ζk to be in-
dependently propagated through the PHD SLAM framework
[4]. Each augmented feature evolves in time according to the
transition f(ζk|ζk−1, uk−1) and, if detected by the sensor,
generates a measurement z with likelihood pD(ζk)g(z|ζk).
Let the vehicle state be sampled by N particles, to produce
N×|Mk| augmented states, ζk.

If L denotes the space of features and K denotes the space
of vehicle states, Campbell’s theorem [13] implies that the
intensity of the point process on L×K formed by the cartesian
product of a point process on L, with intensity ṽ, and a point
process on the mark space (a vehicle pose particle) K,

v(xk,m) = p(xk|m)ṽ(m), (10)

where p(·|m) is the mark distribution given a point m of the
original point process on L. Moreover, if the point process
on L (the set of features) is Poisson, then the product point
process on L × K is also Poisson [13]. As the RFS of the
joint vehicle and map state is therefore Poisson, the derivation
established in [9], can be incorporated in this work to include
the joint vehicle-feature augmented state. Given a set of
augmented features, ζk, joint estimates of the number of
features, their locations as well as the vehicle state can then
be obtained. The PHD-SLAM recursion is therefore,

vk|k−1(ζk) =∫
f(ζk|ζk−1, uk−1)vk−1(ζk−1)dζk−1 + bk

=
∫

f(ζk|xk−1,mk, uk−1)vk−1(xk−1,mk)dxk−1 + bk

1Note that for notation clarity, here xk = xk .



vk(ζk) =
[
1− pD(ζk)+

∑

z∈Zk

Λ(z|ζk)
ck(z) +

∫
Λ(z|ξ)vk|k−1(ξ)dξ

]
vk|k−1(ζk) (11)

where at time k,

bk = intensity of the new feature RFS Bk,
Λ(z|ζk) = pD(ζk)g(z|ζk),
g(z|ζk) = likelihood of z, given the joint state ζk,
pD(ζk) = probability of detection of the feature in

ζk ,given the pose in ζk,
ck = intensity of the clutter RFS Ck.

In [10], Gaussian noise assumptions were used to obtain
closed form solutions for the target tracking PHD filter.
Similarly for the PHD-SLAM filter, Gaussian mixture (GM)
techniques can be applied to solve the PHD-SLAM joint
intensity recursion of eqn.(11). It is also possible to use
a particle-based approach [14], however, for mildly non-
linear problems the Gaussian mixture approach is much
more efficient. The following section thus presents a GM
implementation of the PHD-SLAM filter.

V. GAUSSIAN MIXTURE (GM) PHD-SLAM

Let the joint intensity, vk−1(ζk−1), at time k− 1 be a
Gaussian mixture of the form,

vk−1(ζk−1) =
N×Jk−1∑

i=1

w
(i)
k−1N

(
ζ; µ(i)

k−1, P
(i)
k−1

)
(12)

composed of N×Jk−1 Gaussians, with w
(i)
k−1, µ

(i)
k−1 and P

(i)
k−1

being their corresponding weights, means and covariances
respectively. Note that the weight, w

(i)
k−1 is a weight on both

a particular feature state, m, and a particular vehicle pose
x

(n)
k−1, i.e. on the joint state ζ

(i)
k−1.

Since the map is assumed static, the joint state transition
density is, f(x(n)

k |x(n)
k−1, uk−1)δ(mk−mk−1) where x

(n)
k−1 is

one of N vehicle pose particles at time k−1. Let the new
feature intensity at time k also be a Gaussian mixture,

bk =
N×Jb,k∑

i=1

w
(i)
b,kN

(
ζ; µ(i)

b,k, P
(i)
b,k

)
(13)

where w
(i)
b,k, µ

(i)
b,k and P

(i)
b,k determine the shape of the new

feature GM proposal density according to a chosen strategy.
This is analogous to the proposal distribution in the particle
filter [4] and provides an initial estimate of the new features
entering the map (see section V-A). Again, each new fea-
ture density component, N (m; ·) is concatenated with each
predicted vehicle pose particle, x

(n)
k to form the N×Jb,k

components of the GM new feature intensity. Therefore, the
predicted intensity, vk|k−1(ζk) is also a Gaussian mixture,

vk|k−1(ζk) =
Jk|k−1∑

i=1

w
(i)
k|k−1N

(
ζ;µ(i)

k|k−1, P
(i)
k|k−1

)
(14)

where, Jk|k−1 = N(Jb,k + Jk−1) and,

w
(i)
k|k−1 = w

(i)
k−1

µ
(i)
k|k−1 = ζ

(i)
k|k−1

P
(i)
k|k−1 = P

(i)
k−1





for i ∈ {1, . . . , N×Jk−1}

w
(i)
k|k−1 = w

(i)
b,k

µ
(i)
k|k−1 = µ

(i)
b,k

P
(i)
k|k−1 = P

(i)
b,k





for i ∈ {N×Jk−1 + 1, . . . , N×Jb,k}.

Assuming a Gaussian measurement likelihood, g(z|ζk), it
can be seen from eqn.(11), that the joint posterior intensity,
vk(ζk), is consequently a Gaussian mixture,

vk(ζk) = vk|k−1(ζk)
[
1− PD(ζk)+

∑

z∈Zk

Jk|k−1∑

i=1

v
(i)
G,k(z|ζk)

]
(15)

where,

v
(i)
G,k(z|ζk) = w

(i)
k N (ζ; µ(i)

k|k, P
(i)
k|k) (16)

w
(i)
k =

PD(ζk)w(i)
k|k−1q

(i)(z, ζk)

ck(z) +
Jk|k−1∑

j=1

PD(ζk)w(j)
k|k−1q

(j)(z, ζk)

with, q(i)(z, ζk) = N (
z; Hkµ

(i)
k|k−1, S

(i)
k

)
. The components

are obtained from the standard EKF update equations,

µ
(i)
k|k = µ

(i)
k|k−1 + K

(i)
k (z −Hkµ

(i)
k|k−1) (17)

P
(i)
k|k = [I −K

(i)
k ∇Hk]P (i)

k|k−1 (18)

K
(i)
k = P

(i)
k|k−1∇HT

k [S(i)
k ]−1 (19)

S
(i)
k = Rk +∇HkP

(i)
k|k−1∇HT

k (20)

with ∇Hk being the Jacobian of the measurement equation
with respect to the features estimated location. As stated pre-
viously, the clutter RFS, Ck, is assumed Poisson distributed
[6], [7] in number and uniformly spaced over the sensor
surveillance region. Therefore the clutter intensity is,

ck(z) = λcV U(z) (21)

where λc is the average number of clutter returns, V is the
volume of the sensor’s surveillance region and U(·) denotes a
uniform distribution over range and bearing. Gaussian pruning
and merging methods are used as in [10].



A. The New feature Proposal Strategy

The new feature proposal density, eqn.(13), is similar to
the proposal function used in particle filters, and is used
to give some a priori information to the filter about where
features are likely to appear in the map. In SLAM, with no a
priori information, bk, may be uniformly distributed in a non-
informative manner about the space of features (analogous to
the prior map used in occupancy grid algorithms). However,
in this work the feature birth proposal at time k is chosen
to be the set of measurements at time k−1, Zk−1. The sum∑N×Jb,k

i=1 w
(i)
b,k then gives an estimate of the expected number

of new features to appear at time k.

VI. ALGORITHM PERFORMANCE

This section analyses the performance of the proposed GM-
PHD SLAM filter in a simulated environment, and compares
it to a FastSLAM implementation using maximum likelihood
data association decisions and Log-Odds feature management
[4]. The vehicle is assumed to be traveling at 3ms−1 while
subject to velocity and steering input noises of 1ms−1 and 5o

respectively. Only 10 particle samples are used for both filters
and both filters receive the same noisy input samples and sen-
sor measurements. Two simulated comparisons are performed
in an ‘easy’ and ‘difficult’ scenario. For the ‘easy’ scenario,
the clutter parameter, λc = 0, feature detection probability
is 0.95, and the measurement noises are 0.25m in range and
0.5o in bearing. For the ‘difficult’ scenario, λc = 10, feature
detection probability is again 0.95 and the measurements
noises are set at 12.5m in range and 25o in bearing. The
effect of the artificially large measurement noises are to give
the appearance of closely spaced features, hampering data
association decisions and feature map building.

Figure 1 shows the estimated vehicle trajectory and cor-
responding feature map from both filters. Both results com-
pare well with ground truth (green). This result verifies the
accuracy of the proposed PHD-SLAM filter, in its ability to
jointly estimate the vehicle trajectory, the number of features,
and their corresponding location, without the need for external
data association and feature map management methods, as are
required by FastSLAM (and other vector-based solutions).

The missed feature declaration highlights an issue of the
proposed method with respect to pD(ζk). In the presented
implementation, this is simply a binary function which has
an assumed value of 0.95 if the feature is predicted to be
within the sensor field of view, and 0 if it is not. Vehicle
and feature estimation uncertainty may result in a feature
erroneously being hypothesised of being within the field of
view, or vice-versa. If the proposed filter then receives a
measurement contrary to the prediction, the resulting feature
weight may be detrimentally reduced, and a missed feature
declaration may occur. The uncertainty in the estimated sensor
field of view is not considered in this implementation.

The raw measurements as well as the final posterior joint
estimate of both filters for the ‘hard’ scenario are presented
respectively in figures 2 and 3. As is clearly evident, the
proposed filter displays dramatically reduced feature-based

mapping error in the face of large data association uncertainty
and large quantities of spurious measurements, reporting only
a single false feature and a single missed feature over the
entire run. This is expected, as the clutter rate is integrated
directly into the filter recursion in an optimal manner and fea-
ture management is performed jointly with feature and vehicle
location estimation. Figure 4 shows the estimated number
of features in the map over time, for both the discussed
filters, as well as the number of false measurements at each
time instant. The proposed filter accurately tracks the true
number of features over time, whereas the FastSLAM filter
deviates drastically in the face of the challenging spurious
measurements and data association ambiguities. Estimating
the true number of state dimensions influences the accuracy of
the overall FB-SLAM filter. The estimated vehicle trajectory
also displays less error than that of the FastSLAM approach.
Increased trajectory estimation accuracy may be possible by
increasing the number of pose samples, as is also the case for
the FastSLAM algorithm. Figure 5 compares the estimated
vehicle heading over the course of the test, highlighting the
increased accuracy of the proposed filter. As is evident from
the update of eqn.(15), the proposed algorithm scales linearly
with O(NJk|k−1z(k)), which equals that of a naive Fast-
SLAM implementation. Future work will address reducing
this to a Log order complexity of the number predicted map
states Jk|k−1. The presented results illustrate the effectiveness
of the new finite-set based SLAM framework, and the pro-
posed GM-PHD implementation, when compared to vector-
based solutions which fail to encapsulate the entire system
uncertainty into the filter recursion.

Fig. 1. Comparative results for the proposed GM-PHD SLAM
filter (black) and that of FastSLAM (red), compared to ground truth
(green).

VII. CONCLUSION

This paper outlined an alternative formulation to the
Bayesian SLAM problem, using random set theory. The set
theoretic approach allows for detection uncertainty, spurious
measurements as well as data association uncertainty to be
incorporated directly into the filter recursion. This is in
contrast to vector-based SLAM which requires additional al-
gorithms and pre/post processing to solve the data association



Fig. 2. The predicted vehicle trajectory (blue) along with the raw
sensor measurements for the ‘hard’ scenario, at a clutter density of
0.03m−2. Also superimposed are the ground truth trajectory and
feature map (green).

Fig. 3. The estimated trajectories of the GM-PHD SLAM filter
(black) and that of FastSLAM (red). Estimated feature locations are
also shown.
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Fig. 5. The error in vehicle heading estimate for the proposed (black)
and FastSLAM (red) filters.

problem prior to filter update, and to extract estimates of the
number of features present in the map. These are necessary
as such sources of uncertainty are not considered in the
classical vector-based measurement model and subsequent
filter recursion. Previous Bayesian SLAM solutions also lack
a concept of Bayesian optimality as the number of observed
features is not jointly estimated with their states.

Propagating the first order statistic of the random set
(the probability hypothesis density) is a common method
of reducing the computational requirements of implement-
ing the set-valued Bayesian recursion. By augmenting the
feature state, with a history of vehicle poses, conditional
independencies between the features and the vehicle state
are introduced. The joint vehicle feature RFS was shown to
maintain the necessary Poisson assumptions for application
of the tracking based PHD recursion for the PHD-SLAM
problem. A Gaussian mixture implementation of the PHD-
SLAM filter was outlined assuming a Gaussian system with
non-linear measurement and process models. The proposed
finite-set filter was compared to a FastSLAM implementation
with explicit (per particle) data association decisions and
feature management methods. Result show the proposed filter
performing similarly to FastSLAM in an ‘easy’ scenario,
and considerably outperforming it in a ‘hard’ scenario. This
work therefore validates the alternative SLAM formulation
proposed here and motivates further research.
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