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Abstract. This paper describes the Random Finite Set approach to
Bayesian mobile robotics, which is based on a natural multi-object fil-
tering framework, making it well suited to both single and swarm-based
mobile robotic applications. By modeling the measurements and feature
map as random finite sets (RFSs), joint estimates the number and loca-
tion of the objects (features) in the map can be generated. In addition,
it is shown how the path of each robot can be estimated if required. The
framework differs dramatically from existing approaches since both data
association and feature management routines are integrated into a single
recursion. This makes the framework well suited to multi-robot scenarios
due to the ease of fusing multiple map estimates from swarm members, as
well as mapping robustness in the presence of other mobile robots which
may induce false map measurements. An overview of developments thus
far is presented, with implementations demonstrating the merits of the
framework on simulated and experimental datasets.
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1 Introduction

Mobile robotics is becoming an increasingly popular field of research, especially
as embedded computing technology matures and gets ever more sophisticated.
The goal of a mobile robot (or a swarm of mobile robots) is typically to travel
through an unknown environment autonomously, while being continuously aware
of both its surroundings and its position in relation to those surroundings. To
measure the area of operation, robots are equipped with a suite of sensors such
as lasers, radar, sonar or cameras which are inherently prone to sensing and data
association error. In addition, the control inputs applied to a robots actuators
introduce further uncertainty into the robot’s position due to noise and kine-
matic modeling errors of the robot. Due to these multiple sources of uncertainty,
Bayesian approaches have become widely popular [1], [2], [3], [4], which adopt



probabilistic robot and sensor models and attempt to extract optimal estimates
of the map and robots.

By far the most common approach to the problem is to use a random vector
framework, in which the map and robot paths are modeled as random vec-
tors containing positional information about the features and robot locations
respectively [1]. While this model is the basis for the majority of existing mobile
robotics algorithms, it requires independent data association and map manage-
ment routines to respectively assign measurements to features and to estimate
the number of features in the map [5], [6]. Recently, a new framework has been
developed using Random Finite Set (RFS) models [7], [8], [9], which alleviates
the need for independent routines and unifies the stochastic mobile robotics
framework into a single Bayesian recursion. This new approach admits numerous
benefits such as removal of data association, increased robustness to measure-
ment error, integration of map management, straightforward fusion of multiple
robot map estimates, expected map estimation and can be readily applied to
single or multiple robot scenarios.

This paper advocates a fully integrated Bayesian framework for mobile robotics
under DA uncertainty and unknown feature number. The key to this formula-
tion is the representation of the map as a finite set of features. Indeed, from
an estimation viewpoint, it is argued in section that the map is indeed a finite
set and not a vector. Using Random Finite Set (RFS) theory, mobile robotics is
then posed as a Bayesian filtering problem in which the posterior distribution of
the set-valued map is propagated forward in time as measurements arrive. In the
case of an unknown robot path, the joint density including the robot trajectory
can be propagated. A tractable solution which propagates the first order mo-
ment of the map, its Probability Hypothesis Density (PHD), is presented. The
PHD construct can also be interpreted in terms of occupancy maps [9], [10]. In
this paper, both the map estimation from a known robot path and joint map/
trajectory estimation from an unknown robot path are examined separately. In
particular, mapping robustness to multiple robots, which may interfere with the
map building process, is demonstrated.

2 Background

Map estimation is closely related to the multi-target filtering problem, where the
aim is to jointly estimate the time-varying number of targets (features) and their
states from sensor measurements in the presence of data association uncertainty,
detection uncertainty, clutter and noise. The first systematic treatment of this
problem using random set theory was conceived by Mahler in 1994 [11], which
later developed into Finite Set Statistics and the Probability Hypothesis Density
(PHD) filter in 2003 [12]. A detailed treatment can be found in [13]. The mobile
robotics problem was first formulated in an RFS framework in [7], with mapping
and localisation algorithms presented in [8]. The approach modeled the joint ve-
hicle trajectory and map as a single RFS, and recursively propagates its first
order moment. Stemming from the popular FastSLAM algorithm [6], a factored



approach to RFS-SLAM was proposed in [14] however vector-based approxima-
tions of RFS integrals were used which invalidate the approach. A theoretically
correct factored approach was presented in [15], [9], which propagates the poste-
rior PHDs of multiple trajectory-conditioned maps and the posterior distribution
of the vehicle trajectory, with implementations on marine based radar data also
appearing in [16].

3 The Robotics RFS Filtering Framework

This section details both the RFS map estimation filter and the RFS SLAM
filter.

3.1 The Robotic Mapping Problem

As was first proposed in [7] and [8], let M be the RFS representing the entire
unknown environment comprising static map features and multiple mobile robots
and let Mk−1 be the RFS representing the subset of the map that has passed
through the field-of-view (FoV) of the on-board sensor with trajectory X0:k−1 =
[X0, X1, . . . , Xk−1] at time k − 1, i.e.

Mk−1 = M∩ FoV (X0:k−1). (1)

Given this representation, Mk−1 evolves in time according to,

Mk = Mk−1 ∪
(

FoV (Xk) ∩ M̄k−1

)
(2)

where M̄k−1 = M−Mk−1, i.e the set of features that are not in Mk−1. If
fk|k−1(Mk|Mk−1, Xk−1) then represents the RFS feature map state transition
density, the generalised Bayesian RFS robotic mapping recursion can be written
[17],

pk|k−1(Mk|Z0:k−1, X0:k) =
∫

fk|k−1(Mk|Mk−1, Xk)×
pk−1(Mk−1|Z0:k−1, Xk−1)δMk−1 (3)

pk(Mk|Z0:k, X0:k) =
gk(Zk|Xk,Mk)pk|k−1(Mk|Z0:k−1, X0:k)∫

gk(Zk|Xk,Mk)pk|k−1(Mk|Z0:k−1, X0:k)δMk
(4)

where gk(Zk|·) denotes the likelihood of the RFS measurement and δ denotes
a set integral. Integration over the map, requires integration over all possible
feature maps (all possible locations and numbers of features).



3.2 The Joint Robotic Mapping and Localisation Problem

To jointly estimate the map and the robot trajectory, denoted by the random
vector X1:k, the posterior density of (4) can be modified to get,

pk(Mk, X1:k|Z0:k, U0:k−1, X0) = pk(X1:k|Z0:k, U0:k−1, X0)pk(Mk|Z0:k, X0:k).
(5)

where U0:k−1 denotes the robot control inputs random vector. Note that the
second term is exactly equivalent to the posterior of (4). The first term can be
calculated via,

pk(X1:k|Z0:k, U0:k−1, X0) = gk(Zk|Mk, Xk)× pk|k−1(Mk|Z0:k−1, X0:k)
pk(Mk|Z0:k, X0:k)

× pk|k−1(X1:k|Z0:k−1, U0:k−1, X0)
gk(Zk|Z0:k−1)

(6)

Further details can be seen in [15], [16], [9].

3.3 First order Moment Approximation

As with the classical approaches, the previous Bayesian recursions are numer-
ically intractable and sensible approximations are required. In this work, the
predicted and posterior RFS maps of (3) and (4) are approximated by Pois-
son RFSs with PHDs vk|k−1(m|Z0:k−1, X0:k) and vk(m|Z0:k, X0:k). In essence,
this approximation assumes that features are iid and the number of features is
Poisson distributed, i.e.,

pk|k−1(Mk|Z0:k−1, X0:k) ≈

∏
m∈Mk

vk|k−1(m|X0:k)

exp
(∫

vk|k−1(m|X0:k)dm
) (7)

pk(Mk|Z0:k, X0:k) ≈

∏
m∈Mk

vk(m|X0:k)

exp
(∫

vk(m|X0:k)dm
) . (8)

This PHD approximation has been proven to be effective in multi-target tracking
[13]. As shown in [12], [17], the recursion of (3) and (4) can equally be reduced
to a predictorcorrector form. The PHD predictor equation is,

vk|k−1(m|X0:k) = vk−1(m|X0:k−1) + b(m|Xk) (9)

where b(m|Xk) is the PHD of the new feature RFS, B(Xk). The PHD corrector
equation is then,

vk(m|X0:k) = vk|k−1(m|X0:k)
[
1− PD(m|Xk)+

∑

z∈Zk

Λ(m|Xk)
ck(z|Xk) +

∫
Λ(ζ|Xk)vk|k−1(ζ|X0:k)dζ

]
(10)



where, PD(m|Xk) is the probability of detecting a feature at m, ck(z|Xk) is
the PHD of the clutter RFS and Λ(m|Xk) = PD(m|Xk)gk(z|m,Xk). The PHD
recursion is far more numerically tractable than propagating the RFS map den-
sities of (4). In addition, the recursion can be readily extended to incorporate
multiple sensors / swarms of robots by sequentially updating the map PHD
with the measurement from each robot. In addition, using the same Poisson
approximations, (6) can be readily evaluated. A graphical depiction of a PHD
approximated by a Gaussian Mixture before and after an update is shown in
figure 1.

Fig. 1. An example of a map PHD superimposed on the true map represented by black
dots. The peaks of the PHD represent locations with highest concentration of expected
number of features. The PHD on the left is at time k − 1, and that on the right is at
time k.

The PHD construct is also beneficial to the multi-robot submapping problem
[18], where the global map may be recovered by simply adding (and averaging
the over-lap) the PHD sub-maps.

4 Filter Implementations

This section outlines a Gaussian Mixture implementation of the proposed filters.
For the Robotic Mapping filter of section 3.1,let the predicted map PHD,

vk−1(m|Xk−1) =
Jk−1∑

j=1

η
(j)
k−1N

(
m; µ(j)

k−1, P
(j)
k−1

)
(11)

which is a mixture of Jk−1 Gaussians, with η
(j)
k−1, µ

(j)
k−1 and P

(j)
k−1 being the corre-

sponding predicted weights, means and covariances respectively for the jth Gaus-
sian component of the map PHD. Let the new feature intensity, b(m|Zk−1, Xk),
also be a Gaussian mixture of the form,

b(m|Zk−1, Xk) =
Jb,k∑

j=1

η
(j)
b,kN

(
m; µ(j)

b,k, P
(j)
b,k

)
(12)



where, Jb,k defines the number of Gaussians in the new feature intensity at
time k and η

(j)
b,k, µ

(j)
b,k and P

(j)
b,k are the corresponding components. The predicted

intensity is therefore also a Gaussian mixture,

vk|k−1(m|Xk) =
Jk|k−1∑

j=1

η
(j)
k|k−1N

(
m; µ(j)

k|k−1, P
(j)
k|k−1

)
(13)

which consists of Jk|k−1 = Jk−1 + Jb,k Gaussians representing the union of the
prior map intensity, vk−1(m|Xk−1), and the proposed new feature intensity, ac-
cording to (9). Since the measurement likelihood is also of Gaussian form, it
follows from (10) that the posterior map PHD, vk(m|Xk) is then also a Gaus-
sian mixture given by,

vk(m|Xk) = vk|k−1(m|Xk)
[
1− PD(m|Xk)+

∑

z∈Zk

Jk|k−1∑

j=1

v
(j)
G,k(z, m|Xk)

]
. (14)

The components of the above equation are given by,

v
(j)
G,k(z, m|Xk) = η

(j)
k (z|Xk)N (m; µ(j)

k|k, P
(j)
k|k) (15)

η
(j)
k (z|Xk) =

PD(m|Xk)η(j)
k|k−1q

(j)(z, Xk)

c(z) +
Jk|k−1∑

`=1

PD(m|Xk)η(`)
k|k−1q

(`)(z, Xk)

(16)

where, q(j)(z, Xk) = N (
z;Hkµ

(j)
k|k−1, S

(j)
k

)
. The terms µk|k, Pk|k and Sk can be

obtained using any standard filtering technique such as EKF or UKF. In this
paper, the EKF updates are adopted. The clutter RFS, Ck, is assumed Poisson
distributed [2] in number and uniformly spaced over the mapping region and
Gaussian management methods are carried out as in [19].

For the Robotic Mapping filter of section 3.2, the location density of (6) can
be propagated via Particle Filtering techniques [6], [15]. If the vehicle transition
density is chosen as the proposal distribution, the weighting for the ith particle
becomes,

w̃
(i)
k = gk(Zk|Z0:k−1, X̃

(i)
0:k)w(i)

k−1. (17)

Then for each hypothesised robot trajectory particle, an independent robotic
mapping filter of equations (17)-(22) is executed.

5 Results & Analysis

The benchmark algorithms used in the analysis are the EKF-based mapping fil-
ters [4] and the FastSLAM localisation [6] algorithm with maximum likelihood



data association, using a mutual exclusion constraint and a 95% χ2 confidence
gate. An arbitrary simulated feature map and vehicle trajectory are used as
shown in figure 2. Existing approaches to mobile robotics typically deal with
interfering measurements through ‘feature management’ routines, primarily via
the landmark’s (feature’s) quality (LQ) [4] or a binary Bayes filter [6]. These
operations are typically independent of the main filtering update, whereas the
proposed approach unifies feature management, data association and state fil-
tering into a single Bayesian update giving it a more robust performance in the
presence of multiple mobile robots.

Fig. 2. Left: The simulated environment showing point features (green circles). A sam-
ple measurement history plotted from the robot trajectory (green line) is shown. Right:
Comparison of mapping error vs. measurement noise for the proposed filters and clas-
sical vector EKF solutions.

Figure 2 also shows the filter performance in increasing measurement noise.
Figure 3 shows a comparison of the map estimate for each filter at differing noise
inflation values, γ. In a mobile robot swarm, mapping robots should exclude the
moving robots from the static feature map. As such, figure 3 also depicts the
suitability of the proposed approach to swarm based mapping, as the approach
is robust to an increasing number of other robots. The proposed mapping frame-
work performs well in the presence of increased measurement uncertainty and
other mobile robots.

By assuming an unknown vehicle trajectory, and applying random control
inputs, this section analyses the proposed joint mapping and localisation filter
in comparison to the popular FastSLAM algorithm [6]. Figure 4 demonstrates
the ability of the trajectory estimation filter to estimate the location of the robot
at each time step, showing less error than conventional methods. In terms of es-
timating the map from an unknown path, figure 5 show how the RFS framework
and proposed filters maintain accurate estimates of the number of features in the
map and their locations, even in the presence of false measurements from other
robots and mapping noise. Experimental results based on a 77GHz millimeter
wave radar mounted on an autonomous robot are shown in 6.



Fig. 3. Left: Feature mapping error vs. clutter density for vector based NN-EKF and
JCBB-EKF approaches and the proposed PHD framework, with the PHD approach seen
to perform well in high clutter. Right: Comparison of the map estimation error in the
presence of increasing densities per square meter of mobile robots.
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Fig. 4. The mean and standard deviation of the expected trajectory estimates of the
proposed RFS approach versus that of FastSLAM over 50 MC runs. LQ refers to an
implementation with the ‘landmark quality’ method of [4].

Fig. 5. Left: The average estimated number of features in the map vs. ground truth for
each approach. The feature number estimate from the proposed approach can be seen
to closely track that of the ground truth. Right: A comparative plot of the mean and
standard deviation of the map estimation error vs. time. Note that the ‘ideal’ error
converges to zero, an important property for robotic mapping filters.



Fig. 6. A: Raw radar measurements and noise vehicle path. B: The scan map plotted
from the GPS path. C: Posterior Estimate from FastSLAM, D: Posterior Estimate
from PHD-SLAM.

6 Conclusion

This paper shows that from a fundamental estimation viewpoint that a feature-
based map is a finite set and subsequently presented a Bayesian filtering for-
mulation as well as a tractable solution for the feature-based mobile robotics
problem. The framework outlined here presents a new direction of research for
the multiple mobile robot community, which naturally encapsulates the inherent
system uncertainty. Both a mapping-only and joint robot trajectory / map filter
was introduced and analysed. In contrast to existing frameworks, the RFS ap-
proach to mobile robotics jointly estimates the number of features in the map as
well as their individual locations in the presence of data association uncertainty
and clutter. It was also shown that this Bayesian formulation admits a number
of optimal Bayes estimators for mobile robotics problems. Analysis was carried
out both in a simulated environment through Monte Carlo trials, demonstrating
the robustness of the proposed filter, particulary in the presence of large data
association uncertainty and clutter, illustrating the merits of adopting an RFS
approach a swarm-based robotics applications.
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