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Abstract—This paper presents a simultaneous localisation and
mapping (SLAM) algorithm implemented on an autonomous sea
kayak with a commercial off-the-shelf X-band marine radar
mounted. The Autonomous Surface Craft (ASC) was driven in
an off-shore test site in Singapore’s southern Selat Puah marine
environment. Data from the radar, GPS and an inexpensive single-
axis gyro data were logged by an on-board processing unit as the
ASC traversed the environment, which comprised geographical
and surface vessel landmarks. An automated feature extraction
routine is presented, based on a probabilistic landmark detector,
followed by a clustering and centroid approximation approach.
With restrictive feature modeling, and a lack of vehicle control
input information, it is demonstrated that via the novel RB-PHD-
SLAM Filter, useful results can be obtained, despite an actively
rolling and pitching ASC on the sea surface. In addition, the
merits of investigating ASC SLAM are demonstrated, particularly
with respect to the map estimation, obstacle avoidance and target
tracking problems. Despite the presence of GPS and gyro data,
heading information on such small ASC’s is greatly compromised
which induces large sensing error, further accentuate by the
large range of the radar sensor. This work is a step towards
realising an ASC capable of performing environmental or security
surveillance and reporting a real-time active awareness of the
above-water scene.

Index Terms—Random Finite Set SLAM, Marine Radar,
Autonomous Surface Craft

I. INTRODUCTION

The goal of realising a completely autonomous outdoor

mobile platform remains a challenging research issue. While

autonomy requires multiple task-specific modules, that which

is common to all is the ability of the platform to have an active

awareness of its working environment, as well as knowing

its location at each time with respect to that environment. A

precise measurement of the robots surroundings is essential to

any task or behaviour the robot may be required to perform.

A broad range of exteroceptive sensors are generally deployed

on the autonomous vehicle to acquire information about the

surrounding area, which measure the relative range and bearing

(as well as other properties) from the vehicle to environmental

landmarks. Regardless of the choice of sensor to measure the

working environment (a marine landscape in this work), such

measurements are subject to uncertainty such as measurement

noise, detection uncertainty, spurious measurements and data

association uncertainty. Stochastic estimation methods have

become popular in handling all these sources of uncertainty

in the measured data. Furthermore, given the inherent co-

dependance of localisation and mapping, their joint estimation

became a highly active research field since the seminal devel-

opments of smith et. al [1], and the problem became known

as Simultaneous Localisation and Mapping (SLAM).

Fig. 1. The experimental testing ground at Singapore’s Selat Puah:
A fused satellite / sea-chart overview.

While the vast majority of SLAM systems operate on

grounded land vehicles [2], [3], the operating environment

examined in this paper is a marine scenario off the southern

coast of Singapore. Figure 1 depicts this scene as sea chart

fused with satellite imagery, where the scale of the image is

approximately 10km x 10km. The test-site within the scene

where trials were carried out is also highlighted. Despite the

availability of positional information via GPS with minimal

occlusion, performing SLAM with an ASC gives rise to

a number of challenging issues, especially when the map

estimation component of SLAM is considered. In general, as

the mass of water displaced by the surface vessel decreases, the

uncertainty of its heading increases, since for a given sea-state,
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a smaller vessel will pitch roll and yaw more than a bigger

vessel. Thus, for a 3m long, 100Kg (fully laden) autonomous

sea-kayak (described in section III), heading uncertainty poses

a serious concern, particulary when registering the relative

measurements to a global frame. Moreover, the smaller size al-

lows for increased maneuverability, introducing frequent sharp

turns and non-linear trajectories, adding further challenges to

the task of map building and target tracking.

II. RELATED WORK

Investigations into SLAM in a marine environment have

received widespread interest over the passed few years, how-

ever, almost exclusively in the underwater domain. In [4], a

delayed-state SLAM approach was presented and implemented

on an underwater vehicle with mounted vision sensors. The

approach emulated a structure-from-motion type algorithm

from the vision community, using images registered from the

estimated vehicle poses to estimate the scene. Fixed sector

scan sonar are also a popular choice for underwater robotics

applications and are adopted in a number of influential works.

A motion estimation and map building algorithm based on a

fusion of vision and sector scan sonar data is described in [5].

The approach relied on correlated matches between successive

sonar scans and point matches between images to achieve the

mostly likely pose of the vehicle. Correlation based methods

are commonly adopted in the presence of difficult to model and

interpret data, such as that from an unknown and unstructured

underwater terrain. Extending the directionality of sector scan

sonar of the full 360o FoV, the mechanically scanned sonar

has also been a popular choice. SLAM implementations in

a swimming pool using a line-feature approach and scanning

sonar were presented in [6]. The study was extended to a semi-

structured underwater scenario in [7].

In the grounded autonomous robotics community, radar

sensors have been adopted by quite a number of research

groups worldwide. The ACFR in Sydney has a long history of

working with and designing frequency modulated carrier wave

(FMCW) W-band radar for use in mobile robotics. The seminal

SLAM work of [2] used a W-band radar sensor for feature

based SLAM experimental analysis, while reflectively patterns

from leisure craft were examined in [8]. Further SLAM and

mapping investigations using W-band radar were presented in

[9], [10], [11], [12] examining the signal statistics and their

influence on the resulting localisation and map estimates. A

scan matching approach for mobile robotics was developed

for an FMCW S-band radar in [13], however features were

not extracted and jointly estimated with the vehicle pose.

This work therefore extends radar based navigation to a

marine environment, presenting a unique addition to the wide

range of SLAM implementations. While laser based systems

mounted on an ASC, when coupled with suitable algorithms,

have proven useful for obstacle avoidance [14], for SLAM

investigations, a marine radar represents a natural choice of

exteroceptive sensor. To the authors’ knowledge, this is the first

time that feature-based SLAM has been investigated using a

commercial pulsed X-band radar mounted on an ASC. Despite

the low mounting height of just 1.5m above the sea-surface,

this work demonstrates that the sensor can register land and

vessel measurements at ranges of up to 5Km, while performing

recursive localisation and map estimation tasks.

III. THE AUTONOMOUS SURFACE CRAFT

This section details the hardware deployed in this work. The

ASC is a robotic sea-kayak which represents a low cost, high

load bearing platform, being highly maneuverable and capable

of operating in shallow waters. For stabilisation in the choppy

waters common to Singapore’s Selat Puah, lateral buoyancy

aids were added to the platform, as depicted in figure 2. The

ASC is equipped with a GPS receiver and low cost DSP5000

single-axis gyroscope for 3D pose (xk, yk, φk) measurements

at each time k and is drivable / steerable via a rear mounted

remote control electric thruster.

Fig. 2. The ASC used in the sea trials.

The X-band sensor mounted on a 1.5m pole, also evident in

figure 2, is the M-1832 BlackBox Radar from Furuno powered

by an onboard battery. The mechanically scanned beam has

a width of 3.9o in azimuth and 20o in elevation. The large

elevation beamwidth makes the sensor robust to the sometimes

severe pitch and roll of the ASC. An onboard processing unit

logs the GPS and gyro data at a rate of 1Hz, with the radar

data being sampled and logged at a rate of 0.5Hz. Given that

the distance traversed by the ASC over a single radar scan

is negligible compared to the range (maximum 36 nautical

miles) and resolution of the sensor, the issues of distortion with

mechanically scanned sensors [6] are considered insignificant.

While the unusually low mounting height of the marine

radar undoubtedly increases the sea clutter interference in the

logged data, by adopting suitable processing algorithms, the

signal can be readily used for recursive localisation and map

estimation filters as demonstrated later in section VI. For the

trials carried out in this work, the radar range bin resolution,

δr, was set to 7.5m, with a maximum range of 7.68Km. An

example of a logged radar scan is superimposed on the ground

truth image of figure 1 from the measured pose of the ASC at

that time and presented in figure 3. The measured GPS data

of the ASC trajectory is also shown. Note the (slight, in this



chosen example) angular misalignment due to the poor heading

measurement. Reflections from landmarks at distances greater

than 5km from the ASC are evident in the data, despite the low

mounting height of the sensor. The following section describes

the extraction of features from this data for the purpose of

performing SLAM.

Fig. 3. A sample measurement from the X-band radar mounted on
the ASC.

IV. MARINE RADAR FEATURE EXTRACTION

This section describes the extraction of suitable features

from the data depicted in figure 3. Prior to performing feature

approximation, the data is first classified into target, H1

hypothesis, and sea-clutter, H0 hypothesis, via a stochastic

constant false alarm rate detector. Such probabilistic detection

methods are based on an underlying assumption on the sea-

clutter amplitude statistics. In this work, the amplitude dis-

tribution of the sea clutter is obtained empirically by Monte

Carlo analysis of over a large number of sample scans, using

manually selected windows containing only radar returns from

the sea. An adaptive detector is then described to determine the

regions of interest in the data. These areas of the data are then

smoothed and clustered to extract the feature measurements.

A. Adaptive Detection

If ψ is the received radar signal amplitude, then the empiri-

cal sea clutter amplitude, p(ψ|H0) can be approximated by an

exponential distribution,

p(ψ|H0) =







1

µ
exp−ψ/µ if ψ > 0

0 Otherwise
(1)

as seen in figure 4. While for this trial, the moment µ of the sea

clutter amplitude distribution may be empirically estimated,

constituting a priori information for the feature detection

module, in practice, the moment may change depending on

the sea state or roll / pitch of the ASC. As such, an adaptive

detection method is applied to locally estimate the moment, µ,

in each range bin, r, and derive a variable threshold value, Tr.
Figure 4 also shows a sample radar power vs. range

spectrum, comprising sea clutter as well as both point (surface

craft) and extended (land) targets. Due to the closely lying

point targets and to avoid potential target masking, an Ordered

Statistics approach is applied where [10], [15],

Pfa = kos

(

2W

kos

)

(kos − 1)!(τ + 2W − kos)!

(τ + 2W )!
(2)

with the threshold value Tr = τµ̂r . τ represents the scaling

constant which determines the decision threshold value Tr to

achieve a fixed rate of false alarm. 2W and kos are constants

which represent the sliding window width and the ‘k-factor’

respectively. The constant τ can then be obtained by non-linear

zero finding routines. The resulting threshold across all the

range bins for the sample radar spectrum is shown in figure 4,

using the parameters, 2W = 40, Pfa = 0.05 and kos = 30.
As can be seen, the point targets are detected, while

most of the land reflections are suppressed. This is because

land reflections have the appearance of clutter measurements.

This is useful for SLAM applications, since extended targets

are more difficult to reliably parameterise as stable features.

However, the the resulting map then reflects only point-like

objects.

B. Clustering and Feature Extraction

Based on the point target detections from the adaptive

threshold, the regions of the measurement data are further

examined to assess their likelihood of representing stable

features. As can be seen from the measurement data of figure 3,

targets rarely occupy a single range bin. Therefore, to suppress

the high frequency signal fluctuations which are primarily

noise or sea clutter readings, a 2D Gaussian low pass filter

is convolved with the regions of the scan identified by the

adaptive threshold. The smoothed features are then clustered

based on nearby pixels and pruned according to a minimum

and maximum area constraints.

Fig. 5. Sample point feature measurements (yellow lines) extracted
from the raw radar data. These measurements are fed to the SLAM
filter for localisation and map building.

V. SLAM ALGORITHM

This section describes the feature-based SLAM algorithm

implemented and analysed in this paper. Stemming from the
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seminal developments in the tracking community [16], [17],

recent SLAM investigations suggest that a feature map is more

appropriately represented as a set of features, requiring the

tools of random finite set (RFS) theory [9], [18], [19]. This

approach is also adopted in this paper.

A. The Process Model

Unlike ground based vehicles which are generally restricted

to forward facing motion dynamics, a sea-based ASC is subject

to numerous uncertain disturbances such as currents and wind,

moving the ASC in any arbitrary direction. To account for this,

the following nonlinear process model is adopted,

xk|k−1 = xk−1 + Vk−1∆tk cos(φk−1 + δφk) +Dx

yk|k−1 = yk−1 + Vk−1∆tk sin(φk−1 + δφk) +Dy

φk|k−1 = φk−1 + δφk

Here, Dx and Dy represent random perturbations in the

ASC motion due to external sea forces and are modeled by

White Gaussian signals. The angular change in orientation,

δφk, is recorded by an on board single axis gyroscope and is

assumed corrupted with White Gaussian noise. ∆tk = tk −
tk−1 is determined from the measurement rate of the gyro. In

this investigation, for simplicity, Vk = Vk−1 and is chosen a

priori due to the lack of suitable Doppler Velocity Log sensors.

A constant velocity model could also be assumed, and the

recursive estimation of Vk integrated into the SLAM algorithm.

B. The Measurement Model

In the system used in this work, the primary exteroceptive

measurement sensors is the X-band radar. Such as sensor is

prone to missed detections, false alarms, measurement noise

and data association uncertainty. To encapsulate such sources

of uncertainty, a Random Finite Set measurement model is

adopted as,

Zk =
⋃

m∈Mk

Dk(m,Xk) ∪ Ck(Xk) (3)

which incorporates the feature detections in Dk(m,Xk) and

the spurious measurements in Ck(Xk). The individual mea-

surements z comprise relative range and bearing measurements

from the ASC pose at time k.

C. The Filter

The RFS-SLAM joint posterior can be factorised as,

pk(Mk, X0:k|Z0:k, U0:k−1, X0) =

pk(X0:k|Z0:k, U0:k−1, X0)pk(Mk|Z0:k, X0:k) (4)

where a Rao-Blackwellised implementation implies the map-

ping recursion is approximated by a Gaussian Mixture PHD

Filter, and the trajectory recursion by a Particle Filter [18].

The calculation of the particle weighting likelihood however,

requires the evaluation of,

gk(Zk|Z0:k−1, X0:k) =

∫

p(Zk,Mk|Z0:k−1, X0:k)δMk

which involves a set integral over all possible maps. Note

that this likelihood is simply the normalising constant of

the Bayes recursion for propagating the RFS map density,

pk(Mk|Z0:k, X0:k) in (4). The weighting likelihood can then

be written,

gk(Zk|Z0:k−1, X0:k) =
gk(Zk|Mk, Xk)pk|k−1(Mk|X0:k)

pk(Mk|X0:k)
.

By approximating the predicted and updated RFS map

densities as Poisson RFSs according to,

pk|k−1(Mk|X0:k) ≈

∏

m∈Mk

vk|k−1(m|X0:k)

exp
(∫

vk|k−1(m|X0:k)dm
) (5)

pk(Mk|X0:k) ≈

∏

m∈Mk

vk(m|X0:k)

exp
(∫

vk(m|X0:k)dm
) , (6)

and setting the dummy variable Mk = ∅, a solution was

presented and analyzed in [18]. In this paper, an alternative

choice of map is used, Mk = {m̄}, where m̄ is a single

feature chosen according to a given strategy. In this case, the

weighting likelihood becomes,

gk(Zk|Z0:k−1, X0:k) ≈
1

Γ

[(

(1 − PD(m̄|Xk))κ
Zk

k +

PD(m̄|Xk)
∑

z∈Zk

κ
Zk−{z}
k gk(z|m̄,Xk)

)

vk|k−1(m̄|X0:k)

]

(7)



with,

Γ = exp

(

m̂k − m̂k|k−1 −

∫

ck(z)dz

)

vk(m̄|X0:k).

Here m̂k and m̂k|k−1 are the estimated and predicted number

of features in the explored map Mk, while vk and vk|k−1 are

the updated and predicted Probability Hypothesis Density’s of

the map. The map estimation is handled by a Gaussian Mixture

implementation of the PHD predictor,

vk|k−1(m|X0:k) = vk−1(m|X0:k−1) + b(m|Xk) (8)

where b(m|Xk) is the PHD of the new feature RFS, B(Xk),
and corrector,

vk(m|X0:k) = vk|k−1(m|X0:k)

[

1 − PD(m|Xk)+

∑

z∈Zk

Λ(m|Xk)

ck(z|Xk) +
∫

ζ∈Mk

Λ(ζ|Xk)vk|k−1(ζ|X0:k)dζ

]

(9)

where Λ(m|Xk)=PD(m|Xk)gk(z|m,Xk) and,

PD(m|Xk) = the probability of detecting a feature at

m, from ASC pose Xk.

ck(z|Xk) = PHD of the clutter RFS Ck in (3)

at time k.

See [18] for more details.

VI. EXPERIMENTAL RESULTS

This section details the analysis of the SLAM algorithm

on an extensive dataset recorded from the test site shown in

figure 1. The ASC was taken on a nonlinear trajectory over

1.8Km long, logging over 650 consecutive radar scans at a

rate of 0.5Hz in trial run last over 25 minutes. Multiple loops

and linear paths were traversed. The analysis focusses first

on the location estimates from the SLAM filter, followed by

an examination of the estimated map. Monte carlo analysis

is presented based on 50 sample runs using 100 trajectory

particles in each trial.

A. Positional Estimation Analysis

Figure 6 depicts the estimated ASC trajectory from each

for the MC runs in comparison with the GPS data. A sample

trajectory from the assumed ASC motion model, using the

measured gyroscope data, is also provided. The results demon-

strate that the proposed approach can accurately reconstruct

the traversed path, despite the sensing and vehicle modeling

difficulties. Quantification of the positional error is provided

in figure 7, indicating a maximum error of 45m. While this

result demonstrates that ASC based SLAM is realisable, further

investigations have to be carried out to get positional error

comparable to that from GPS.
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B. Map Estimation Analysis

Given that the ground truth heading information is unavail-

able, the quality of the resulting map estimate can be used

the gauge the quality of the estimated ASC heading. This is

especially suitable given the large sensing range of the radar.

Since (most of) the point targets are stationary during the trial,

and all of the extended targets (land masses) are stationary, for

a given map estimation routine, the quality of the posterior map

estimate from the temporal fusion of the measurement data

provides an indication of the quality of the pose estimates.

Using a simplistic linear function from signal power to Log-

Odds occupancy [12], the posterior occupancy grid can be

propagated as each X-band radar measurement arrives. A close

up snap shot of the posterior map estimates from both a sample

predicted trajectory and the estimated trajectory are provided

in figures 8 and 9. The fused map from the SLAM method is

seen to be far more informative than that from the predicted

trajectory, with the island coastline and surface vessels clearly

evident.

VII. CONCLUSION

This paper examined the applicability of SLAM using an

autonomous surface craft (ASC) in a marine environment.

Adopting a commercial X-band radar as the main extero-

ceptive sensor, the investigation demonstrated that despite the

widespread presence of GPS information at sea, the heading

measurements (based on an inexpensive single axis gyroscope)



Fig. 8. The estimated map from the predicted ASC trajectory, in
comparison to satellite and sea chart imagery. An uninformative map
is evident given the poor pose estimates.

supply

ships

Fig. 9. The estimated map from the proposed SLAM algorithm, in
comparison to satellite and sea chart imagery. The map be seen to
coincide well with the islands present as well as a surface vessels.
Unfortunately the GPS information from supply ships (evident in
figure 1) in the area was unavailable at the time.

can still be prone to large error. Considering the large range of

the sensor, this resulted in uninformative map estimates, lim-

iting the applicability of the craft to tasks such as autonomous

mapping, obstacle avoidance and surface craft tracking.

Based on an automatic point target detector, a Random

Finite Set feature based simultaneous localisation and mapping

algorithm was developed to recursively estimate the ASC

location and heading, as well as build the map. The point

targets exploited were anchored supply ships and buoys present

in the test site. The algorithm demonstrated how useful results

are realisable, even with difficult to model vehicle dynamics

and a lack of any input control measurements. Comparisons

of the estimated maps demonstrates the merits of SLAM for

an ASC, given uncertainty heading and sensor measurements

information. Future work will incorporate the extended land

targets, as well as examine joint mapping and target tracking

from an ASC.
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