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Abstract—The use of random finite set (RFS) in simultaneous
localization and mapping (SLAM) has many advantages over the
traditional random-vector-based approaches. These include the
consideration of detection and clutter statistics and the circum-
vention of data association and map management heuristics in
the estimator. However, the equations involved in the RFS-SLAM
formulation are computationally more complex compared to the
vector-based formulation. The evaluation of the set measurement
likelihood is one of the computationally complex steps, as it is
necessary to consider the likelihood of all possible landmark
to measurement correspondences. In general, a brute-force ap-
proach in calculating a set measurement likelihood is computa-
tionally intractable, and such an approach prevents a RFS-SLAM
algorithm to perform in real time. This paper presents a collection
of methods for efficiently computing and approximating the set
measurement likelihood. The proposed methods are validated in
both simulations and using real experimental data.

I. INTRODUCTION

SLAM is a problem in robotics in which a robot uses
its available sensor measurements to estimate a map of the
operating environment, while concurrently determining its
pose relative to the map. The general probabilistic approach
currently adopted by the mobile robotics community uses
random vectors to represent the robot and map state, and
solves the SLAM solution through stochastic filtering, or
batch estimation [1]. Recently, a different representation has
been introduced for feature-based maps using RFSs [2, 3],
in which, random vectors typically representing the spatial
location of individual landmarks are placed in a set, in which
the cardinality (or size) is also a random variable.

There are several benefits in using a RFS-based filtering
approach to estimate the map in SLAM compared to a vector-
based approach. Typically in many (but not all) vector-based
approaches, data association (or the correspondence between
measurements and landmarks) is performed separately from
the actual filter, and is determined using heuristics (e.g., by
comparing the measurement likelihood to a landmark with
a preset threshold). These correspondences are required to
determine which landmark estimate is updated by a mea-
surement. In contrast, under an RFS-SLAM framework, data
association becomes a part of the landmark estimate update
process for which Bayes theorem is applied. Essentially, the
RFS approach updates landmark estimates by simultaneously
associating them with every measurement, and does not rely
on any heuristics in the process. Another benefit of RFS-based
filtering is that it can account for detection statistics (i.e.,

Fig. 1: The robotic platform and scanning laser range finder
used in generating the experimental dataset.

the probability of detection of landmarks, and the amount of
clutter or outliers expected from a scene). Finally, the RFS
approach not only estimates the spatial position of landmarks,
but also the number of landmarks that have entered the field
of view of the robot’s sensors. This is because the cardinality
of a RFS is also a random variable that is estimated.

Similar to vector-based filtering methods such as the
Kalman filter (KF), RFS-based filtering methods also stem
from the the recursive Bayesian filtering paradigm. A set
of mathematical tools called finite set statistics (FISST) was
developed by Mahler [4] for handling multi-target estimation
problems in which RFSs are used, and allows the applica-
tion of Bayesian estimation techniques for use with RFSs.
However, the use RFSs causes the equations of the estimator
to become more complex, especially in the evaluation of the
measurement likelihood that appears in the update step of the
Bayes filter. In [5], a method for evaluating set measurement
likelihoods was proposed whereby the probability of detection
of landmarks is assumed to be one, while the clutter intensity
is assumed to be zero. This simplified the the set measurement
likelihood calculation, but it is still considered a brute-force
approach as it still has factorial complexity.

This paper proposes a collection of methods for the efficient
evaluation of the set-based measurement likelihoods in RFS



SLAM. The contribution of this paper is to show how the set
measurement likelihood can be evaluated and approximated
for practical implementation that is more appropriate for real
time applications. In Section II, A brief formulation of RFS
SLAM, and its realization as the Rao-Blackwellized (RB)-
probability hypothesis density (PHD) SLAM algorithm will
be reviewed to show where the set measurement likelihood
appears. Section III will show the brute-force approach in
evaluating the set measurement likelihood and will present
several methods in which the process can be made to be
more computationally tractable. Sections IV and V will show
the simulation and experimental results of performing SLAM
using the set measurement evaluation techniques proposed in
this paper. The experimental dataset we use was collected
using a scanning laser range finder on the robotic platform
shown in Fig. 1.

II. PROBLEM FORMULATION

This section will show where the set measurement likeli-
hood appears in the RFS formulation of SLAM, to motivate the
need for its efficient computation. SLAM is a state estimation
problem in which the best estimate of the robot trajectory
and map feature positions over time are sought by using
all available sensor measurements. In general, the underlying
stochastic system can be represented using the non-linear
discrete-time equations:

xk = g (xk−1,uk, δk) (1)

zjk = h
(
xk,m

i, εk
)

(2)

where
xk represents the robot pose at time-step k,
g is the robot motion model,
uk is the the odometry measurement at time-step k,
δk is the process noise at time-step k,
zjk is the j-th measurement vector at time-step k
h is the sensor-specific measurement model,
mi is a random vector for the position of landmark i,
εk is the measurement noise

The set of all n measurements at time-step k is defined as:

Zk ≡
{
z1k, z

2
k, . . . , z

n
k

}
(3)

The measurements in this set may originate from a real
landmark, or may be clutter (or false alarms). The likelihood
of a measurement set being clutter is defined as pκ (Z).

Similarly, by placing the independent random vectors for
the map into a RFS, the observed landmarks up to time-step
k are defined as:

Mk ≡
{
m1,m2, . . . ,mm

}
, (4)

where the number of landmarks, |Mk| = m, is also a
random variable. Using the above definitions in (3) and (4),
the required estimate is:

p (x0:k,Mk|Z1:k,u0:k) (5)

An advantage of RFS estimation is the possibility of in-
corporating detection statistics. The probability of detection,

PD (x,m), is the probability of obtaining a measurement
given a robot pose, and a landmark position.

Similar to a vector-based formulations, (5) can theoretically
be solved by Bayesian estimation [4] using the following
recursive equations:

p (x0:k,Mk|Z1:k−1,u0:k)

=p (xk|xk−1,uk) p (x0:k−1,Mk−1|Z1:k−1,u0:k−1) (6)

p (x0:k,Mk|Z1:k,u0:k)

=
p (Zk|x0:k,Mk) p (x0:k,Mk|Z1:k−1,u0:k)∫
p (Zk|x0:k,Mk) p (Mk|Z1:k−1,x0:k) dMk

(7)

In (7), the set measurement likelihood factor

p (Zk|x0:k,Mk) (8)

appears both in the numerator, and the normalizing factor in
the denominator. The Bayes filter is generally computationally
intractable in both the vector form and the RFS form without
making further assumptions. Before exploring how (8) can
be evaluated, it is also useful to see where it appears in a
realization of the RFS-based Bayes filter.

In the vector form of the Bayes filter, Gaussian assumptions
allow the KF to be derived from the Bayes filter [6]. With
RFSs, the map can be assumed to follow a multi-object
Poisson distribution1. Clutter measurements are also assumed
to be multi-object Poisson distributed. By approximating these
distributions using their first statistical moments (their PHDs
or intensities, v), the Bayes filter can be implemented as the
PHD filter. Furthermore, by representing elements withinMk

with Gaussian random vectors, the PHD of the map can be
expressed as a Gaussian mixture (GM):

vk =

m∑
i=1

wikN
(
µik,Σ

i
k

)
(9)

where wik is the weight of the i-th Gaussian. From this, the
Bayes filter is approximated as the GM-PHD filter [7]. The
update of each Gaussian is performed using the KF or one
of its derivative such as the Extended Kalman filter (EKF)
for non-linear systems, where each Gaussian is updated using
every measurement. The details of this procedure can be found
in [5].

To the best knowledge of the authors, the works by Mullane
et al. [3] and Lee et al. [8] are currently the only com-
putationally tractable approaches to RFS-based SLAM. Both
approaches use a similar technique to a factored solution to
SLAM (FastSLAM) [9] and factors (5) into:

p (x0:k|Z1:k,u1:k) p (Mk|x0:k,Z1:k,u1:k) (10)

The first term in (10) is a conditional probability density
function (PDF) on the robot trajectory and is sampled using
particles. The second factor in (10) is the density of the map
conditioned on the robot trajectory. Mullane et al. [3] used the

1This implies that features are independently and identically distributed,
while the number of features follow a Poisson distribution [4].



GM-PHD filter [7] to solve for the second factor, and called
this method RB-PHD-SLAM. The approach by Lee et al. [8]
is based on single-cluster processes.

The detailed formulation of the RB-PHD-SLAM algorithm
can be found in [3, 10]. The focus here will be on the im-
portance weighting step of RB-PHD-SLAM since it involves
the use of the set measurement likelihood (8). The importance
weighting step is essential in updating the trajectory estimate
in RB-PHD-SLAM after a measurement update. The impor-
tance weight of a particle can be expressed as:

ω
[ι]
k ≡ ω

[ι]
k−1

p (x0:k|Z1:k,u1:k)

p (x0:k|Z1:k−1,u1:k)
(11)

= ω
[ι]
k−1ηp

(
Zk|x[ι]

0:k,Z1:k−1

)
(12)

The normalizing constant η can be ignored as all particle
weights will be multiplied by this same constant. To solve
(12), it can be expressed as:

ω
[ι]
k = ω

[ι]
k−1

∫
p
(
Zk|Mk,x

[ι]
0:k

)
p
(
Mk|x[ι]

0:k,Z1:k−1

)
dMk

(13)

The form of (13) is similar to the importance weighting
equation in FastSLAM. However, (13) is computationally
intractable due to the set integral involved with the RFS
formulation. Instead, an alternate expression, derived using
Bayes theorem, must be used:

ω
[ι]
k = ω

[ι]
k−1p

(
Zk|Mk,x

[ι]
0:k

) p(Mk|Z1:k−1,x
[ι]
0:k

)
p
(
Mk|Z1:k,x

[ι]
0:k

) (14)

Here, it can be seen that the set measurement likelihood
appears on the right hand side of (14). Also, the RFS Mk is
a free variable that can be chosen arbitrarily since it appears
only on the right hand side. This has led to the use of different
strategies for solving (14). These include: a) The empty-set
strategy when Mk = ∅, b) the single-feature strategy when
an arbitrary map location is used, Mk = {m}, and c) the
multi-feature strategy when multiple map locations are used,
Mk =

{
m1,m2 . . .mm

}
[5]. In general, it has been found

that choosing Mk to include the location of all the features
estimated to exist in p

(
Mk|Z1:k,x

[ι]
0:k

)
produces the best

results in terms of estimation error. However, using a large
Mk also increases the computational complexity in calculating
the set measurement likelihood. Therefore, it is essential to
find a computationally tractable way of calculating the set
measurement likelihood.

III. CALCULATING THE SET MEASUREMENT LIKELIHOOD

Given a set of estimated landmarks and a set of mea-
surements, the first step in calculating the set measurement
likelihood is to determine the measurement likelihood of
individual landmark to measurement pairings. This is nec-
essary because the set measurement likelihood considers all
possible pairs of landmark to measurement correspondences,
as well as the possibilities of landmarks being mis-detected,

and measurements being clutter. To aid with the mathematical
presentation, the following definitions are made:

Z0
k ≡ Zk (15)

Z1
k ≡

{
Z0
k −

{
y1
}}

, y1 ∈ Z0
k (16)

Zrk ≡
{
Zr−1k − {yr}

}
, yr ∈ Zr−1k (17)

In the above, Z0
k is the set of measurements at time-step k.

Z1
k is the set of measurement with one measurement taken

away from set Z0
k . Continuing with this pattern, Z2

k is the
set of measurements with two measurements subtracted from
the original set. Also let pκ () represent the likelihood of
measurements being clutter. Using these definitions, the set
measurement likelihood (8) can be expressed as in (18).

In the last line of (18), the variable r represents the
number of measurement to landmark pairings. The upper limit
of r cannot exceed the number of measurements, n, nor
the number of landmark estimates, m. For a given number
of pairings (i.e., a given value of r), all permutations of
measurement to landmark estimate pairings are considered.
Unpaired measurements give the clutter factor, pκ (Zrk). Paired
couples (from i = {1 . . . r})) provide the probability of
detection and the single-landmark measurement likelihood
factors, PD

(
mi
)
p
(
yi|mi,x0:k

)
. Lastly, unpaired landmark

estimates give the mis-detection factors,
(
1− PD

(
mi
))

.

A. The Brute-Force Approach

The most computationally expensive method of calculating
the set measurement likelihood is to iterate through every
possible combination of landmark to measurement correspon-
dences (i.e., calculate every term in (18). Computationally, this
is problematic when the number of landmarks and measure-
ments is large, as the complexity of this brute-force method is
O((|M|+ |Z|)!). Therefore, the brute-force approach quickly
becomes impractical when |M| + |Z| exceeds 8 to 10. With
many robotic applications and sensors, the number of land-
marks and measurements considered exceeds this limitation.
Hence, it is essential to find other computationally efficient
methods for calculating and approximating the set measure-
ment likelihood.

In [5], the evaluation of the set measurement likelihood
was performed by assuming that the probability of detection
of landmarks is close to 1 while the clutter intensity is
0. However, this method becomes increasingly inaccurate
when the detection statistics deviate from these assumptions.
Furthermore, the technique in [5] still retains a factorial
complexity. The techniques presented next makes no such
assumptions on the detection statistics, and yet are able to
calculate the set measurement likelihood in a computationally
efficient manner.

B. Landmark and Measurement Grouping

In general, the measurement likelihood between any land-
mark and measurement is non-zero. For practical purposes,
small likelihood values (from landmarks and measurements
that are spatially well-separated) below a certain threshold can
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be assumed to be 0. This allows landmarks and measurements
to be grouped in a way such that landmarks from one group
have zero likelihoods with measurements from any other group
(or conversely, the measurements from one group have zero
likelihoods with the landmarks from all other groups). This
grouping method is similar to techniques used in multiple-
target tracking for determining likely data association hypothe-
ses [11]. However, the evaluation of the set measurement
likelihood requires not only the best hypotheses, but rather
the likelihood of all hypotheses.

Numerous methods can be used for the grouping process.
One possible method is to represent landmarks and measure-
ments as nodes in a graph, where an edge exists between nodes
with non-zero measurement likelihoods (after thresholding).
A connected-component analysis [12] can be performed to
identify the landmark-measurement groups. The complexity
of this method is linear in the number of nodes and edges.
Therefore, in the worse case scenario where all nodes are
connected, the complexity is at most O((|M|+ |Z|)2).

Once the original likelihood table has been broken down
into smaller groups, it is possible to then find the overall
measurement likelihood by finding the set measurement like-
lihood of each group, and then finding their product. Next,
two methods will be presented on how the set measurement
likelihood can be found for individual groups.

C. Lexicographical Iteration

If the size of a group is small (e.g., less than 8 landmarks
and measurements), the brute-force approach can be used to
determine the set measurement likelihood of the group, while
constraining the computational complexity to be constant.
Lexicographical ordering [13] can be used to iterate through all
permutations of landmark to measurement correspondences.
The set measurement likelihood of the group can be calculated
by summing the joint likelihood of all the permutations.

As an example, consider the case of 2 landmarks and 3
measurements. The notation [a1, a2|a3, a4, a5] will be used to
represent a permutation, where the first two entries represent
the measurement associated to the landmarks. The remaining
three entries are for non-associated measurements. The value
of ai can range from 1 to 4, with 1 to 3 corresponding to an
actual measurement, while 4 represents no measurement. The

first three permutations in the lexicographical sequence are:
[1, 2|3, 4, 4], [1, 2|4, 3, 4], [1, 2|4, 4, 3].

In the first sequence, the first landmark corresponds with
measurement 1 and the second landmark corresponds with
measurement 2, while measurement 3 is considered clutter.
The next two permutations, although being different than the
first, actually represents the same correspondences as the first
permutation, where measurement 3 is considered clutter. For
calculating the set measurement likelihood, it is important to
avoid these double-counting instances in the lexicographical
sequence. This can be accomplished by always reversing the
last n elements of each permutation. In the above example, the
first permutation should become [1, 2|4, 4, 3]. From this, the
next permutation in the sequence should be [1, 3|2, 4, 4], but by
reversing the last 3 elements, this should become [1, 3|4, 4, 2].
This indicates that measurements 1 and 3 are associated with
the landmarks, while measurement 2 is considered clutter. Fol-
lowing this, the third permutation should then be [1, 4|4, 3, 2],
where landmark 2 is mis-detected, while measurements 2 and
3 are considered clutter. Since lexicographical iteration is only
practical for groups with a small number of landmarks and
measurements, another method is required to handle larger
groups.

D. Modified Murty’s Algorithm

Murty’s algorithm [14] can be used to sequentially de-
termine permutations of correspondences from the high-
est to lowest joint measurement likelihoods. The algorithm
works by iteratively partitioning the permutation with the
highest likelihood, and then finding the highest likelihood
from the new partitions. Assuming that the current highest-
likelihood permutation is [a1, a2, a3, a4, a5], the partition-
ing generates 4 new permutations with certain constraints,
from which the next permutation with the highest weight
can be found: [b1 6= a1, b2, b3, b4, b5], [a1, b2 6= a2, b3, b4, b5],
[a1, a2, b3 6= a3, b4, b5], [a1, a2, a3, b4 6= a4, b5]. Here, the first
partition does not contain the a1 correspondence, while the
second partition contains the a1 correspondence, but not the
a2 correspondence. The correspondences, b1, b2, b3, b4, b5, are
determined by looking for the highest likelihood that satis-
fies the constraints for the respective partition. This can be



achieved by using the linear assignment algorithms such as
the Hungarian method [15] or the JV algorithm [16].

Similarly to the lexicographical iteration, double count-
ing may occur when different partitions generate permu-
tations that have the same physical interpretation. For ex-
ample, assume that there are 2 landmarks and 3 mea-
surements, with the highest-likelihood permutation sequence
[1, 2|3, 4, 4]. The third partition of this permutation sequence
is: [b1 = 1, b2 = 2|b3 6= 3, b4, b5] Using a linear assignment
algorithm to find b4 and b5, the resulting sequence will end
up being [1, 2|4, 3, 4], or [1, 2|4, 4, 3], where measurement 3
is still considered clutter in all cases. To avoid this, Murty’s
algorithm can be modified to not create partitions for cases
where a measurement can only be considered as clutter.

Using this modified Murty’s algorithm with complexity
O((|M|+ |Z|)4), the set measurement likelihood can be
approximated by summing the joint likelihood of successive
permutations with decreasing likelihoods, until the change in
the sum becomes insignificant, or after the i-best permuta-
tions have been summed. For example, the set measurement
likelihood for a group can be approximated by stopping the
modified Murty’s algorithm after the change in the joint
likelihood sum is less than 0.1%, or when the number of
permutations returned by Murty’s algorithm exceeds 200.

In summary, the set measurement likelihood can be cal-
culated by dividing the set of landmarks and measurements
into spatially well-separated groups, and by taking the product
of the set measurement likelihood of all the groups. The
set measurement likelihood for individual groups can be
determined using lexicographical iteration if the group has a
small number of landmarks and measurements. Otherwise, the
modified Murty’s algorithm can be used to approximate the set
measurement likelihood.

IV. SIMULATIONS

2D simulations using the RB-PHD-SLAM algorithm were
used as a first validation of the proposed method for evaluating
set measurement likelihoods. Many simulation trials have
been performed, but the specific results from one particular
simulation run will be shown. The results presented here
are representative of the results observed from all the other
simulation trials.

Recall from (14) that the set measurement likelihood ap-
pears in the importance weighting step of the algorithm, where
an arbitrary map is selected. For the proposed approach, the
map set is selected from the GM PHD as the means of
Gaussians with weights higher than 0.75.

The use of a simulation allows the detection and clutter
statistics to be controlled. For the particular simulation trail
that will be examined, the robot trajectory starts at (0, 0), and
ends near (35, 80). The robot has a simulated range-bearing
sensor and landmarks between the sensing distances of 5m to
25m in any direction may be detected with a probability of
detection of 0.5. Independent of the real detections, false mea-
surements are added with the count being Poisson distributed,
and uniformly distributed over the measurement space, with

an intensity of 0.005m−2. With a sensing area of 1885m2, the
expected number of false measurements per time-step is 9.45
within the sensing area.

Before showing the results of the proposed method of set
measurement likelihood evaluation, it is of interest to show
the simulation results of using FastSLAM [9], which can
be viewed as the vector-based counterpart of the RB-PHD-
SLAM algorithm. Under the conditions specified above, the
estimate results of using FastSLAM are shown in Fig. 2,
where the ground-truth robot trajectory is shown as a dashed
line, and landmark positions are shown as points. A binary
Bayes filter was used alongside the FastSLAM algorithm to
estimate the probability of existence of landmarks, which
are represented by the blue ellipses. Darker-filled ellipses
have a high probability of existence, and lighter-filled ones
correspond with lower probabilities of existence. It can be
observed that there are large errors in both the robot trajectory
and landmark estimates due to the presence of measurement
clutter. This motivates the use of RFS-based algorithms such as
RB-PHD-SLAM, which takes the clutter statistics into account
when calculating state estimates.

The estimate produced by RB-PHD-SLAM using the pro-
posed set measurement likelihood evaluation method is shown
in Fig. 3. The shading on the landmark estimate ellipses cor-
respond with the weight of a estimate in the Gaussian mixture
map. This is analogous to the probability of existence, and
darker-filled ellipses again correspond with landmarks with
higher probabilities of existence. Visually, the robot trajectory
and landmark position estimates appear to be consistent.
To further validate the proposed method, the results of the
proposed method are compared against the results from the
brute-force method introduced in [5]. Due to computational
limitations and the factorial complexity of the brute force
approach, a map set with the means from the 15 Gaussians
with the highest weights in the GM PHD are chosen for
evaluating (14). The estimate produced from the brute-force
approach is shown in Fig. 4, which is similar to the results in
Fig. 3.

Fig. 5 compares the robot trajectory error of the proposed
and brute-force approaches. In both cases, the errors have
the same order of magnitude, with the proposed method
performing slightly better. This is likely due to the ability of
the proposed method to select a larger map set for (14), and
also not approximating probabilities of detection as 1, and
clutter intensity as 0.

Both methods perform similarly for the map estimate. Fig. 6
compares the proposed and brute-force approaches using the
optimal sub-pattern assignment (OSPA) metric [17], which
accounts for both spatial and cardinality errors for the map.
For both approaches, the order of magnitude of the error is
approximately the same. Examining Fig. 7, both the proposed
and brute-force methods also perform approximately the same
in estimating the number of landmarks.

Based on these results, it is evident that the proposed
evaluation of the set measurement likelihood indeed yields
consistent RB-PHD-SLAM estimates. Although the brute-
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Fig. 2: The estimate produced by FastSLAM.
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Fig. 3: The estimate produced by RB-PHD-SLAM using the
proposed method of set measurement likelihood evaluation.

force approach is also able to produce similar results, it is
important to make note of the computational time. From
the simulation trials that have been performed using the
same groundtruth trajectory and landmark positions as in
Fig. 3, the average total computation time of the particle
weighting step is 28.27 seconds. In comparison, the brute-
force approach averaged at 5562.91 seconds. For reference,
the simulation spans 300 seconds. These timing results were
obtained by running a C++ implementation of the RB-PHD-
SLAM algorithm on a single computer core of an Intel i7 2.4
GHz CPU. From simulation trials with other trajectory and
landmark configurations, the speed-up gained by the proposed
set measurement likelihood approach is determined to be at
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Fig. 4: The estimate produced by RB-PHD-SLAM using the
brute-force method of set measurement likelihood evaluation.

least 150 times. This improvement in computational speed
makes it more viable for the RB-PHD-SLAM to run in real-
time. Next, validation using hardware experimental data will
be presented.

V. EXPERIMENTS

The robotic platform shown in Fig. 1 was used to collect
a dataset in an outdoor park environment to provide further
validation of the proposed set measurement likelihood evalu-
ation method. The area in which the dataset was collected is
approximately 120m × 120m, as shown in Fig. 8. There are
two curved dirt paths in the area. For the experiment, the robot
traversed an approximate figure-eight path once and returned
to its starting position (0, 0).

A SICK LD-LRS-1000 scanning lidar mounted on the robot
provided planar 2-D scans of the environment at 7.5Hz, with
a resolution of 0.5 degrees and a maximum range of 250m.
In processing the data, a feature extractor searched for close-
to-circular objects (such as tree trunks) from each scan. These
features were used as measurements in the RB-PHD-SLAM
algorithm (i.e., the raw scans were not used directly). Outliers
were included due to moving objects (such as people and cars)
that were captured in the scans. They were also generated from
foliage. Aside from the lidar, the robot has wheel encoders that
measured displacements at 10Hz.

To validate the proposed approach, the experimental dataset
was processed by running RB-PHD-SLAM. For particle
weighting, where it is necessary to evaluate the set mea-
surement likelihood, the algorithm used a maximum of 20
features with weights over 0.75. Note that using this number
of features is computationally infeasible for the brute-force
approach, which motivates the use of the proposed methods.

The result of running RB-PHD-SLAM on the experimental
dataset is shown in Fig. 8. It can be seen that the estimated
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(a) Proposed set measurement likelihood evaluation method
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Fig. 5: Robot trajectory (position and orientation) errors for (a)
the proposed set measurement likelihood evaluation method,
and (b) the brute-force approach, in RB-PHD-SLAM.

trajectory of the robot stays on the dirt path and completes
the figure-eight traversal. The map generated by RB-PHD-
SLAM appears to lack some landmark estimates. This is a
known phenomenon caused by uncertainty in the detection
statistics. As the robot moves away from a landmark, its
probability of detection tends to be overestimated due to the
uncertainty in the robot pose and landmark position, as well
as the presence of occlusions that may not be modeled. This
causes the lowering of the Gaussian weight during landmark
estimate updates and leads to the eventual pruning of the
Gaussian. Nevertheless, the algorithm is able to produce a
consistent robot trajectory estimate by using closer landmarks.

To further motivate the use of the RFS formulation, Fig. 9
shows the results of running the vector-based FastSLAM al-
gorithm [9], the vector-based counterpart of RB-PHD-SLAM.
The trajectory produced by FastSLAM appears to be consistent
up to the completion of the upper loop of the figure-eight
traversal. The presence of outliers then cause the estimate
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Fig. 6: The OSPA errors of the proposed and brute-force
approaches.
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Fig. 7: The estimates on the number of landmarks for the
proposed and brute-force approaches.

(consisting of particles) to turn left more than it is supposed
to. This then causes the estimate for the second half of the
traverse and the map to be inconsistent. This inconsistency is
due the inability for FastSLAM to handle the level of clutter
intensity in the experiment, as well as low probabilities of
detection. It is therefore necessary to use the RB-PHD-SLAM
algorithm in this case, which requires an efficient method of
evaluating set measurement likelihoods.

VI. CONCLUSIONS

This paper examined a collection of methods for effi-
cient evaluation of the set measurement likelihood, which
appears in RFS formulations of SLAM. Although the RFS
formulation provides many advantages over the traditional
vector-based formulation, the equations involved in RFS-
SLAM are more complex, such as in the calculation of
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Fig. 8: Result of the RB-PHD-SLAM algorithm on the dataset.
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Fig. 9: Result of the FastSLAM algorithm on the dataset.

the set measurement likelihood. The brute-force approach in
calculating the set measurement likelihood is computationally
intractable, in general. The method proposed in this paper
uses a divide-and-conquer method of separating landmarks
and measurements into small groups, and then using either
lexicographical iteration or a modified version of Murty’s
algorithm for determining the set measurement likelihood for
each group. The overall likelihood can then be calculated by
taking the likelihood product of all the groups. The proposed
method was tested with the RB-PHD-SLAM algorithm, and
was shown to work in a SLAM simulation. It was also

validated using real experimental data from a robotic platform.
An implementation of the proposed approach and RB-PHD-
SLAM can be found in the open-source C++ RFS-SLAM
library at https://github.com/kykleung/RFS-SLAM.git.
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