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Abstract— Millimetre Wave Radar can offer remarkable
advantages for autonomous robotic mapping and navigation
because their performance is less affected by dust, fog, moder-
ate rain or snow and ambient lighting conditions. Millimetre
Wave (MMW) RADAR differs from other range sensors
as it can provide complete power returns for many points
downrange. In addition, MMW RADAR has a comparatively
long range which can enable a vehicle to localise efficiently
when there are only a few features in the environment.

This paper describes a method to accurately simulate the
range spectra using the RADAR range equation. This is very
important in robot navigation (eg. SLAM) for generating
predictions of what can be observed from different sensor
locations and correspondingly, providing an interpretation for
observed targets. To understand the MMW RADAR range
spectrum and to accurately simulate it, it is necessary to
know the noise distributions in the RADAR spectrum. A
detailed noise analysis during signal absence and presence is
carried out which shows various sources of noise affecting
MMW RADARs. RADAR range bins are then simulated
using the RADAR range equation and the noise statistics
are compared with real results in controlled environments. It
will be demonstrated that it is possible to provide realistic
predicted RADAR power/range spectra, for multiple targets
down range.

A new augmented state vector for an Extended Kalman
Filter is introduced which includes the relative RADAR cross
sections of features, and the RADAR constants and losses
along with the vehicle pose and feature locations. Finally a
SLAM formulation using the proposed methods is shown.
This work is a step towards robust outdoor SLAM with
MMW RADAR based continuous power spectra.

I. I NTRODUCTION

MMW RADAR provides consistent and fairly accu-
rate range measurements for the environmental imaging
required to perform SLAM in dusty, foggy and poorly
illuminated environments. Millimetre wave RADAR sig-
nals have the ability to penetrate many objects and can
provide information for distributed targets that appear in
a single observation. This work is conducted with a77
GHz Frequency Modulated Continuous Wave (FMCW)
RADAR which operates in the millimetre wave region of
the Electro-Magnetic Spectrum.

For Localisation and Map building, it is necessary to
predict the target locations accurately given a prediction

of the vehicle/RADAR location. A method for accurately
predicting the power-range spectra (or range bins) using the
RADAR range equation and the knowledge of the noise
distributions in the RADAR is initially explained in this
paper.

A mobile robot SLAM problem is then formulated which
estimates, robot pose,2D target positions, target relative
RADAR cross sections (RCSs) and certain RADAR pa-
rameters which include transmitted RADAR signal power
losses. Predicted observations are formed using this pre-
dicted state and the given RADAR equation, system and
noise analysis to construct “predicted range-bins”. The
actual observations take the form of received power/range
readings from the RADAR.

Section II briefly summarises related work, while section
III describes how power-range spectra can be simulated
(predicted observations). This utilises the RADAR range
equation and a noise analysis which considers the prop-
agation of noise from its source in the receiver through
the RADAR electronics to the final range output. Methods
for estimating the true range from power-range spectra are
given in section IV where a new robust range estimation
technique based on target presence probability is presented.
Finally section V applies the analysis to a SLAM formu-
lation based on MMW RADAR power-range spectra.

II. RELATED WORK

In recent years RADAR for automotive purposes has
gained interest in shorter range< 200 metres applications.
Most of the work in short range RADAR has focused
on millimetre waves as this allows narrow beam shaping,
which is necessary for higher angular resolution [1]. The
work to date in autonomous navigation using millimetre
wave RADAR is summarised here.

Steve Clark [2] presented a method for fusing RADAR
readings from different vehicle locations into a two-
dimensional representation. The method selects one range
point per RADAR power spectra observation at a particular
bearing angle based on a certain threshold level. This
method takes only one range reading per bin which is
nearer to the RADAR, discarding all others. In [3] Clark



shows a millimetre wave RADAR based navigation system
which utilises artificial beacons for localisation and an
extended Kalman filter for fusing multiple observations.
Human assistance is required for adjusting the threshold as
the returned signal power depends on all object’s RADAR
Cross Section (RCS).

Boehmke et al. [4] succeed in producing three-
dimensional terrain maps using a pulsed RADAR with a
narrow beam of1o and high sampling rate. The1o RADAR
beam has a large antenna sweep volume and its large for
robotic applications. Another design with a2o beam is has
a reduced resolution. The efforts by Boehmkeet al. shows
the compromise between a narrow beam and antenna size,
where a narrow beam provides better angular resolution.

Foessel shows the usefulness of evidence grids for
integrating uncertain and noisy sensor information [5]. In
[6], Foesselet al. show the development of a RADAR
sensor model for certainty grids and also demonstrates
the integration of RADAR observations for building three-
dimensional outdoor maps. Certainty grids divide the area
of interest into cells, where each cell stores a probabilistic
estimate of its state [7] [8]. The proposed three-dimensional
model by Foesselet al. has shortcomings such as the ne-
cessity of rigorous probabilistic formulation and difficulties
in representing dependencies due to occlusion.

III. RADAR R ANGE SPECTRASIMULATION
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Fig. 1. RADAR Range Spectrum obtained from an outdoor environment.

Figure 1 shows a single RADAR range spectra, which
is the received power versus range. As the RADAR signals
can penetrate through most objects, we can achieve an
entire range spectra at any particular bearing. The range
bin, shown in figure 1 is obtained by keeping the RADAR
pointed towards a RADAR corner reflector kept arbitrarily
at 10.25 metres and the second dominant reflection occurs
from a building which is138 metres from the RADAR.
i.e. the RADAR waves penetrates the corner reflector. The
corner reflectors are of known RCS and can give good
reflections back to the RADAR. The spectrum has two
main features: the signal return from targets and noise. As
shown in figure 1, signals are riding over a low frequency

signal which increases its amplitude up to a certain range
(150 metres approx.) and decreases towards the maximum
range (200 metres approx.). This is due to the low pass
filter roll-off in the RADAR receiver section.
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Fig. 2. Power vs. Range

A method for simulating the RADAR range spectra
is now presented. The MMW RADAR range bin can
be simulated from the RADAR range equation and from
the knowledge of the received noise distribution. First,
an introduction is given explaining the relation between
RADAR signal return power and range. A detailed noise
analysis during signal absence and presence is then shown.
This is necessary in predicting the range bins accurately
during target presence and target absence. RADAR range
bins are then simulated and the results are analysed.

A. RADAR Range Equation

The RADAR returned power Pr is proportional to the
RADAR cross section of the object,σ and inversely
proportional to the fourth power of range, R [9]. The simple
RADAR range equation is formally written as

Pr =
Pt G2 λ2 σ

(4 π)3 R4 L
(1)

where Pt is the RADAR transmitted power; G is the
Antenna Gain;λ is the wavelength, (i.e 3.89 mm) and L
the RADAR system losses.

A high pass filter is used to compensate for the R4

drop in received signal power, shown in figure 2. In
an FMCW RADAR, closer objects correspond to signals
with low beat frequencies and vice-versa. Therefore many
RADARs incorporate signal processors which attenuate
low frequencies and amplify high frequencies, to correct
the range-based signal attenuation [10].

B. Noise Analysis during Target Absence and Presence

The noise statistics at various RADAR receiver stages
will now be derived. This analysis shows the noise distribu-
tions in the output of main RADAR receiver components.
The next section shows simulations and the results. The
final distribution is verified with the actual one obtained
from the RADAR. We did the simulation as we do not
have the access to the inner RADAR receiver sections. In
particular:
• VR = Voltage at the receiver antenna output



• V IF = Voltage at the IF filter output
• PIF = Power at the FFT output stage
• PHPF = Power at the high pass filter output stage
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Fig. 3. Millimetre wave RADAR Receiver Section

Figure 3 shows the voltages and power signals appear
at the output of different RADAR receiver sections.

1) Noise Estimation in Target Absence:In the voltage
signal, the thermal noise typically has a Gaussian Distri-
bution with mean zero. The probability density function of
Gaussian distribution is given by

p(VR) =
1√

2 π Ψ0

exp
−VR

2

2Ψo
(2)

whereΨ0 is the variance of the noise voltage. Gaussian
noise, when passed through a narrow band filter, the
probability density function of the envelope of the noise
voltage output is a Rayleigh distribution as shown in figure
4 and as described by equation 3
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Fig. 4. Rayleigh Distribution

p(V IF) =
V IF

Ψ0
exp

−V IF
2

2Ψo
(3)

The signal detection operates on a power signal; a Fast
Fourier Transform (FFT) is being done which transforms
the signal in time domain into frequency domain. The
Fourier spectrum calculation is proportional to the square
of the voltage input signal [12]. The noise distribution
after FFT operation is an exponential distribution [13]. The
distribution is of the form

p(VFFT) =
1
β

exp− (VFFT − µ)
β

(4)

µ is the mean of the distribution which represents the
RMS power of noise andβ is the variance. Figure 5
shows the exponential distribution at the output of the FFT
section.
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Fig. 5. Exponential Distribution after FFT

The exponential distribution when passed through a
high pass filter, the resultant output distribution is an
extreme value type I distribution, also referred to as the
Gumbel distribution (minimum). The general formula for
the probability density function of the Gumbel (minimum)
distribution is given as in equation 5.

p(VFFT) =
1
β

e

((VFFT)− µ)
β e−e

((VFFT)− µ)
β

(5)

whereµ is the mean andβ is the scale parameter or the
variance.

Fig 6(a) shows the Gumbel (minimum) distribution
appears after high pass filter operation. The distribution
is obtained by keeping the RADAR pointed towards the
sky where minute reflections from atmospheric particles
only takes place. The result shown is obtained using a
large number of points (5000) at an arbitrary distance
(120 metres). Fig 6(b) shows the distribution obtained by
simulation considering5000 points (taken arbitrarily) at an
arbitrary distance (120 metres).

2) Noise Estimation in Target Presence:The receiver
noise will affect the signal where there is a signal presence.
The resultant distribution is a convolution of both the signal
and noise distribution and the resultant distribution is a
normal distribution. The histogram in Fig 7 shows a normal
distribution obtained experimentally for5000 observations
of a RADAR retro reflector at10.25 metres; distance
and the number of observations selected arbitrarily. The
continuous curve shows a normalised distribution having
centre as the experimental data set mean. The experimental
histogram has a fair match with the normal distribution
which is also shown in the figure.
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(a) Experimental Estimation
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(b) Simulated Estimation of
Noise Distribution

Fig. 6. Experimental and Simulation results
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Fig. 7. Experimental Estimation of Signal Distribution.

The noise in the presence of signal absence and sig-
nal presence is analysed. The simulation results shows
a fair match with the actual results obtained from the
experiments. The Noise estimation is helpful in accurately
interpreting the range spectra as well as for simulating the
RADAR spectra for feature location prediction while doing
SLAM.

C. Range spectra Simulation

The tools are now complete to simulate/predict RADAR
spectra. In figure 8, an object with a known RCS (10 square
metres) is assumed at a distance of11 metres. As there is
signal attenuation due to target range, a high pass filter
is used for signal attenuation compensation as suggest in
section III. A high pass filter of gain60 dB/decade is
used. The simulated result is as shown in figure 8 (lower
graph) which approximately matches the original RADAR
spectrum, for the real target shown in figure 9. The effect
of filter roll-off (explained previously in this section) is not
included in the simulation as information content is less in
this region in a real range bin.

A method for realistically predicting the RADAR range
spectra has been shown here which will be in used in
section V for predicting observations within a SLAM
framework.

IV. N OISE REDUCTION BASED ONTARGET PRESENCE

PROBABILITY

To try and “pick-out” the true range values from range
bins, previous methods have used a power threshold on the
range bins (the first power to exceed some threshold gives
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Fig. 8. Simulated RADAR Spectrum. The first figure shows the range
spectra without range compensation. The second figure shows the effect
of the range compensation (high pass) filter.
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Fig. 9. Power vs. range of a single range bin obtained from a RADAR
scan.

the closest object) [2] or Constant False Alarm Rate tech-
niques (CFAR) [14] [9]. The problem with the thresholding
method is, it requires human interpretation/intervention for
adjusting the threshold.

The CFAR method tends to work well with aircraft in
the air having relatively large RCS, while surrounded by air
(with extremely low RCS). At ground level however, the
RCS of objects is comparatively low and also there will be
clutter (objects which cannot be reliably extracted). The
CFAR can then misclassify features as noise and noise as
features. As the CFAR is a binary detection technique, the
output is either a one or a zero;i.e. either target presence
or target absence. The combination of subsequent obser-
vations is more difficult with this discrete representation.
The problem arises when the technique classifies noise as
signal.

For typical outdoor environments, the RADAR cross
section of objects may be small. The low returned power
from these objects can be buried in noise. For extracting
these lower signal returns, a method is now introduced



which uses the probability of target presence [15] for
feature detection. The detection problem described here can
be stated formally as a binary hypothesis testing problem
[16]. Feature detection can be achieved by estimating the
noise power contained in the range spectra [17]. The noise
estimate is performed by averaging past spectral power
values and using a smoothing parameter. This smoothing
parameter is adjusted by the target presence probability in
the range bins. The target presence probability is obtained
by taking the ratio between the local power of range spectra
containing noise and its minimum. The noise power thus
estimated is then subtracted from the range bins to give a
reduced noise range spectra.

Let the signal-to-noise power, PSNP(k, l) = P̌(k,l)
Pmin (k,l) be the

ratio between the local noisy power value and its derived
minimum; whereP̌(k, l) is thek-th power value of thel-th
range spectra.

In the Neyman-Pearson test [18], the optimal decision
(i.e. whether target is present or absent) is made by
minimising the probability of the type II error, subject to
a maximum probability of type I error is as follows.

The test, based on thelikelihood ratio, is

p(PSNP|H1)
p(PSNP|H0)

H1

≷
H0

δ (6)

whereδ is a threshold; H0 and H1 designate hypothetical
target absence and presence respectively.p(PSNP|H0) and
p(PSNP|H1) are the conditional probability density func-
tions. The decision rule of equation 6 can be expressed
as

PSNP(k, l)
H1

≷
H0

δ (7)

An indicator function, I(k, l) is defined where, I(k, l) = 1
for PSNP > δ and I(k, l) = 0 otherwise.

The estimate of the conditional target presence proba-
bility, p̂

′
(k, l) is

p̂
′
(k, l) = αp p̂

′
(k, l − 1) + (1− αp) I(k, l) (8)

This signal presence probability can be used as a target
likelihood within the SLAM formulation.αp(0 < αp < 1)
is a smoothing parameter. The value ofα is chosen in such
a way that the probability of target presence in the previous
range bin has very small correlation with the next range
bin.

The results of the proposed target detection algorithm are
shown in figure 10 where a noisy RADAR range bin, the
reduced noise range spectra and the corresponding target
presence probability have been plotted.

The probability of target presence vs. range of a two-
dimensional RADAR scan obtained from an outdoor field
is shown in figure 11. The features detected by the algo-
rithm such as RADAR reflectors and a wall are marked
in the figure. The probability of target presence is plotted
against the vertical axis as shown in the figure. This
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Fig. 10. Top graph: received range bin; Middle Graph: reduced noise
graph; Lower Graph: probability of target presence versus range.

representation of the environment provide a better cor-
respondence with the actual environment compared with
the other feature detections techniques such as applying a
constant threshold on the power spectra and Constant False
Alarm Rate (CFAR) techniques. In the constant threshold,
operator assistance is required for adjusting the threshold
for feature detection. CFAR techniques, due to the noisy
range spectra, will produce false alarms as shown in figure
??.

−25

−20

−15

−10

−5

0

5

10

15
−20

−15

−10

−5

0

5

10

15

20

25

00.51

D
is

ta
nc

e(
m

)

P
ro

ba
bi

lit
y

RADAR Reflector, B 

RADAR Reflector, A 

Wall 

False Alarm 

Distance(m)

Fig. 11. Target presence probability vs. Range of a two-dimensional
RADAR scan in outdoor environment. The scan is taken in a football
field. The probability of the targets detected (i.e. RADAR reflectors A
and B, and a wall) are shown in the figure.

V. A PPLICATION: A THEORETICALLY CORRECTSLAM
FORMULATION USING MMW RADAR

This section demonstrates an application of the RADAR
analysis carried out so far. The analysis is used to correctly
formulate a SLAM augmented state update formulation
using MMW RADAR. The RADAR cross section,σ and
the RADAR loss constants, K are included in the state
vector, along with the vehicle state and feature locations, as
these variables are unique to a particular feature/RADAR.

A. Simple Process Model

To illustrate the application, a very simple vehicle kine-
matic model is used for predicting the next vehicle location
[19]. With reference to figure 12, the vehicle state,xv(k)
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is given byxv(k) = [x(k), y(k), θ(k)]T wherex(k), y(k) and
θ(k) are the local position and orientation of the vehicle
at time k. The vehicle state,xv(k) is propagated to time
(k + 1) through a process model. The model with control
inputs,u(k) to the vehicle; predicts the vehicle state at time
(k + 1) together with the uncertainty in vehicle location
represented in the covariance matrixP(k + 1).
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Fig. 13. Vehicle coordinate system and beacon observation

xv(k + 1 | k) = f (xv(k | k) , u(k)) + v(k) (9)

where u(k) is the control input to the vehicle;u(k) =
[T(k) , α(k)]. T(k) is the distance traveled by the vehicle
from time k to k + 1 andα(k) is the steer angle.
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+ v(k)

(10)

The augmented state vector is thenx(k) =[
xv , {F1 , σp1

} . . . {Fi , σpi
} , . . . {FN , σpN

} , K
]T

;
xv is the vehicle pose;Fi = [xpi

, ypi
]T is the i-th feature

location, where1 ≤ i ≤ N. σpi
is the relative RADAR

cross section of thei-th feature andK is the RADAR
specifications together with losses which can be calculated
as shown in the previous section.

v(k) = [vv(k) , 0p1 , 0p1 , vσ1 , · · · 0pi , 0pi , vσi , · · ·
0pN, 0pN, vσN,, 0]T. The SLAM considers that all features are
stationary but the RCS of features changes from different
angles compared to the RADAR locations and can be
modeled using a Gaussian random variable, vσi .

B. Observation Model

The RADAR observation is used to estimate the vehicle
state once the vehicle pose is predicted. During filter
update, the prediction and estimation are fused. For each of
the features in the map, the range,R̂(k+1 | k), the RADAR

bearing angle,̂β(k + 1 | k) and the power,̂̆P(k + 1 | k) are
predicted from the predicted vehicle location in equation
(10).

R̂i(k + 1|k) =√
[x̂pi

(k + 1|k)− x̂(k + 1|k)]2 + [ŷpi
(k + 1|k)− ŷ(k+1|k)]2

(11)

β̂i(k + 1|k) = tan−1

[
ŷpi

(k + 1|k)− ŷ(k+1|k)
x̂pi

(k + 1|k)− x̂(k + 1|k)

]

− θ̂(k + 1|k)
(12)



ˆ̆Pi(k + 1|k) = K + 10 log σpi
(k + 1|k)
− 40 log R̂i(k + 1|k)

(13)

Equations 11, 12 and 13 between them comprise the
predicted observation. The observation model is then given
by

zi(k + 1) = [Ri(k + 1), βi(k + 1), P̆i(k + 1)]T

+ wi(k + 1)
= h(x(k + 1)) + w(k + 1)

(14)

wherez(k + 1) is the observation, andw(k + 1) is the
additive observation noise which here is the variance in
the received power,σ2

p . (w(k + 1) = [0 0 σ2
p ]T) and h is

the non-linear observation function. It is assumed here that
there is no error in range, Ri and bearing angle,βi. In
the future work, quantification of range and bearing angle
error is will be addressed.

C. Results

Implementation and integration of the vehicle and tar-
get state predictions together with the RADAR predicted
and true observations can then continue under the usual
EKF, UKF or particle filter algorithms. To highlight the
contributions of this paper, the initial stages of a SLAM
implementation will be shown in terms of predicting, mea-
suring and gating RADAR range bins. The RADAR was
mounted on a utility vehicle (figure 14) and measurements
were obtained from an outdoor field. A single range spectra
at the starting location is as shown in figure 15. All range
bins from a full360 scan are now collected, and predicted
targets are extracted. The next predicted vehicle location is
calculated using the vehicle model and system inputs. The
range spectra in all directions are then simulated from the
new predicted vehicle location.

Fig. 14. Test vehicle with MMW RADAR and GPS

From the actual new vehicle position, new range bins
are recorded. These are compared with the predicted range
bins in figures 16 and 17.

In figure 16 the predicted range bins are shown. For the
RADAR data received at time,k+ 1, from bearing angles

β
′
1 andβ

′
2 (defined in figure 18), the predicted target spikes

are clearly visible.
In figure 17 the actual range bins are shown for the

corresponding bearing angles, recorded from the vehicles
true position at time,k + 1.

The range spectra simulation explained in this paper
does not consider the antenna beam width and the grazing
angle with which the RADAR beam falls on the target.
This will be addressed in the future work. Figure 18 shows
the predicted targets and their1σ error covariance ellipsi
and the measured targets. The “initialisation” of a SLAM
process shows the ability of gating multiple line-of-sight
features, an ability unique to RADAR.
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Fig. 15. Range spectra obtained from the starting vehicle location and
the corresponding target presence probability.
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Fig. 16. Predicted range spectra from the predicted vehicle location and
the corresponding predicted target presence probability.

VI. CONCLUSION

This paper describes a method to accurately simulate
the range spectra using the RADAR range equation. This
is very important in robot navigation (eg. SLAM) for
generating predictions of what can be observed from
different sensor locations and correspondingly, providing
an interpretation for observed targets. A detailed noise
analysis during signal absence and presence is carried out
which shows various sources of noise affecting MMW
RADARs. RADAR range bins are then simulated using
the RADAR range equation and the noise statistics are
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Fig. 17. Actual range spectra obtained from the next vehicle location
and the corresponding target presence probability.
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Fig. 18. SLAM Formulation - Predicted and actual measurements.

compared with real results in controlled environments.
A new augmented state vector for an Extended Kalman
Filter is introduced which includes the relative RADAR
cross sections of features, and the RADAR constants and
losses along with the vehicle pose and feature locations.
Finally a SLAM formulation using the proposed methods is
shown. This work is a step towards robust outdoor SLAM
with MMW RADAR based continuous power spectra. The
initialisation of a SLAM formulation using the proposed
methods was shown. This work is a step towards building
reliable maps and localising a vehicle to be used in mobile
robot navigation. In the future work, quantifying the range
and bearing angle errors will be addressed. A more accurate
method for range spectra prediction, which considers the
antenna beam width, will also be implemented.
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