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Abstract—A comparison of classical vector, and recently pro-  to frequent impingement of the transmitted radio waves had t
posed set, based Simultaneous Localisation and Mapping (SLAM) ' sea surface. In the presence of such high levelseafclutter

algorithms is presented, based on tests in a marine environment. . .. . ;
An Autonomous Surface Craft (ASC) is described. which com- it will be demonstrated that FISST based SLAM is the natural

prises a simple kayak base and a commercially available X-band Choice for autonomous marine applications. For comparison
marine radar. With restrictive landmark modelling, and a lack of ~ purposes however, it is desirable to test the FISST based
vehicle control input information, it is demonstrated that under ~ SLAM performance with state of the art vector based SLAM
a rar!dom set based framewo.rk, useful results can be obtained, techniques from the robotics literature. It will be demoatsid
despite the presence of a high rate of sea clutter, caused by 4 Nearest Neighbour (NN) based data association, tegeth
the rolling and pitching of the ASC on the sea surface. This . .
work is a step towards realising an ASC capable of performing  With extended Kalman Filter (EKF) based SLAM (referred
environmental or security surveillance of a marine environment.  t0 as NN-EKF-SLAM) with standard map management tech-
nigues, diverges almost immediately with such high clutter
Index Terms—Autonomous Navigation, Random Finite Set  |evels, due to many landmark miss-associations. Thergfore
(RFS) SLAM, Marine Radar, Autonomous Surface Craft the purposes of comparison, radar detections are smoothed,
thresholded and finally clustered to yield a much reduced
landmark set. This of course results in a loss of informatén
SLAM techniques, which rely on random vectors to repre-valid landmarks will inevitably be accidently removed irchu
sent sensor measurements and landmark maps, are extremglghniques. However, this manageable, reduced size lakdma
fragile under the realistic conditions of landmark detttand  set allows an NN-EKF-SLAM implementation, for comparison
association uncertainty. Stemming from the seminal d@velo purposes.
ments in the tracking community [1], recent SLAM investi-
gations suggest that a landmark map is more appropriately Il. RELATED WORK
represented as aet of landmarks, requiring the tools of

T:?gg(_)rm I;mt: SeBt (EFSI) Frr:eog’sg}o‘;\én tﬂz FSIrljl,tAeMse:()StJtSﬁI initial implementation of RFS SLAM in a marine environment,
( ) [2], [3]. By applying P ' without comparisons to vector based approaches.

it has been demonstrated that_ the necessﬁy _for fragile MaP \w/hile marine based SLAM investigations have taken place
management and data association can be eliminated. A smp(l)t\a/er the past few vears. thev have laraelv focussed on the
FISST, known as thérobability Hypothesis DensityPHD) P Y i y gely

provides estimates of the number of landmarks encountered Iunderwater domain. In [5], a delayed-state SLAM approach

. . . U was presented and implemented on an underwater vehicle
SLAM, as well as their spatial locations, taking into acdoun . - . L o
) . 2 . with vision sensors. A motion estimation and map building
a sensor’s and/or landmark detection algorithm’s prokiedsl ; . -
. L N algorithm based on the fusion of vision and sector scan
of detection and false alarm. This is therefore adopted im th

paper, in the form, of ®ao-Blackwellized(RB)-PHD-SLAM sonar data was presented in [6]. SLAM implementations in
appro,ach ' a swimming pool using a line-feature approach and scanning

. . S sonar were presented in [7]. The study was extended to a semi-
This article focusses on the navigational aspects of an P [7] Y

Autonomous Surface Craft (ASC), which must perform SLAM structured underwater scenario in [8],

. . . : . In the grounded autonomous robotics community, radar
in a coastal environment, adopting a commercially avaslabl ;

. S ensors have been adopted by quite a number of research
marine radar, shown in Figure 1(a). Due to sea movemen

and currents, such a small ASC frequently undergoes relgtiv groups worldwide. [9] used a W-band ra_dar sensor for feature
L ; .based SLAM experimental analyses, while reflectivity pate
large angular changes in its roll, pitch, and yaw angless Thi

. from leisure craft were examined in [10]. Further SLAM and
results in many cluttérreturns from the on board sensor, due o S ) .
mapping investigations using W-band radar were presented i

Ireturned sensor readings incorrectly thought to corresptm useful [11], [12] ?Xaminin_g the signal StatiStiC_S and their inflaeron
landmarks. the resulting localisation and map estimates.

I. INTRODUCTION

This paper is an extension of [4], which provided an
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I1l. THE ASCAND THE COASTAL ENVIRONMENT resolution,ér(q), was set to 7.5m, with a maximum rargef
7.68 km.

The ASC is a robotic sea-kayak which is a low cost, high The following section describes the extraction of landraark
load bearing platform, being highly maneuverable and dapab from this data for the purpose of performing SLAM.
of operating in shallow waters. It was originally developed

at the Dept. of Mechanical and Ocean Engineering, MIT for . . .
P g g | Noise in the radar A-Scopesin coastal environments

experiments in autonomous navigation in rivers and coast | ists of utter. Prior 1 torming |
environments [13]. For stabilisation in the choppy waters /g€ty CONSISIS of sea Clutler. Frior o periorming lantkna
election, the data is first classified into landmatk, hy-

common to the test site, lateral buoyancy aids were added 0 thesi d.in thi th landmark |
the platform, as depicted in Figure 1(a). The vehicle codd b pothesis, and, in this paper, the no landmark or cluter

remote operated via a radio link, through the control of an Orpypothess, via a CFAR detector. TQ’UCh probab_lllstlc detact .
board, steerable electric thruster. A marine, X-Band racss methods are based on an underlying assumption on the noise

mounted on a 1.5m length pole above the sea surface. Tf?énp”tUde s;atistics. .

X-Band radar used Wasgthep M-1832 BlackBox Radar from "nl)_ Adaptive Coastal Landmark Detection - OS-CFAR:
Furuno, powered by an on board battery. The mechanicall is the Imeansed_recelved radar signal ampllﬁmﬂth
scanned beam has a width 89° in azimuth and20° in ny range compensation removed then the empirical searclutt
elevation. The large elevation beam width makes the sens plitude, p(S ImIHO.) can be obtained empirically by Monte
robust to the sometimes severe pitch and roll of the ASC. A arlo (MC) analysis over a large number of sample scans,

GPS receiver (Crescent Hemisphere 110), as well as a KVIL‘Sing manually selected windows containing onl_y radarmmeiu :
Industries, Inc. DSP5000 single-axis gyroscope for 3D pos rom the sea. The results of such an MC analysis are shown in

(%, r, &) Measurements were also used in the experiment igure 2 (left), together with its best fit, continuous exential

IV. M ARINE RADAR LANDMARK EXTRACTION

An on board processing unit logged the GPS and gyro data &{lstnbutmn,

a rate of 1Hz, with the radar data being sampled and logged at . 1 exp—s"" /be if slin< o

a scan rate of 0.5Hz - i.e. 1 full 36@weep of the environment p(S"™Ho) = { e (1)
required 2 seconds. Given that the distance traversed by the 0 Otherwise

ASC over a single radar scan is negligible compared 10 it here , is the clutter exponential distribution parameter. In
maximum range cgpablhty of 36 nagtlcal mlles,_and ?Ompare‘ﬂ)ractice, the momeng, may change depending on the sea
to its low resolution (7.5m), the issues of distortion With gia4e or roll / pitch of the ASC. Due to the closely lying point
mechanically scanned sensors [7] were considered insignifi 54marks and to minimise potential landmark masking issue
n th_|s work. ) [15], an Ordered Statistics (OS)-CFAR detection method is
Figure 1 shows the coastal environment and the type Opplied to locally estimate the momenpt,, in each range bin,
landmarks to be detected and used in the sea based SLAW and derive an adaptive threshold val$®SCFAR(q).
experiments. While the unusually low mounting height of the  Figure 2 (centre) shows a sample A-Scope, recorded at a
particular radar bearing angle, comprising sea clutter el$ w
| as both point surface craft and extended land landmarks. The
‘ theoretical probability of false alarn®f>“™~ of the OS-
CFAR processor is

OS-CFAR 2W (kos — D!y + 2W — kos)!
Pfa = kos <k08) (’Y T QW)! ) (2)
where W is the CFAR window width either side of the
particular range bin, usually referred to as the cell undst t
(CUT), ks is the OS-CFAREk-factor and~ represents the
scaling constant which determines the decision threshwmld t
achieve a fixed rate of false alarm. The value~otan be
obtained by non-linear, numerical zero finding routinesrro

(a) The coastal environment and landmarks.  (b) A buoy fixed  Equation 2 according to the desirég}DS-CFAR_ A landmark is
landmark. @

2At a radar height of just over 1.5m above sea level, landmafkseight
greater than 3m above sea level (ships etc) will only falbitite line of
sight of the radar at distances up to approximately 10km apydize to the
. . . curvature of the earth. This neglects atmospheric refraatieffects, which
marine radar undoubtedly increases the sea clutter intgrée  can actually increase the line of sight of a radar [14].

in the logged data, by adopting suitable processing alyost 3“A-Scope” is the term used to describe the received power Bmeion
the signal can be readily used for recursive localisatiod an©f ange. when displayed graphically as in Figure 2 (Centre)

. . . . . 4Note that for processing purposes, the linearised recgieeebr is used,
map estimation filters as demonstrated later in Section Vlhowever, due to the large dynamic range of the received p@iegarithmic
For the trials carried out in this work, the radar range binscale is used for graphical purposes.

Fig. 1: The ASC and a typical landmark used for coastal SLAM.
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Fig. 2: Left: The empirical sea-clutter amplitude distribution. Centre: A sample rauaver vs. range spectrum showing sea clutter, point
and extended landmarks. Right: An adaptive OS-CFAR detection threshold

considered detected in range kiif the received powes'™ (q)
obeys . .
S (g) > SOSCRg) = T (5™ (q)) 3

whereT (S (q)) is the test statistic determined from the cells
neighbouring the CUT; according to the OS-CFAR criterion.
This criterion is that the test statisti&(S""(¢)) is chosen as
the ranked power valué'}i:g, and thatk,s is normally chosen
to be 31W/2 [15]. Importantly, each received power value is
accompanied by a probability of detectid?pS ™R given by

Distance / m

P! 2W — i

g 2W — i+ (v/2W (1 + n3VP(q)))

PBS—CFAR( )

(4)

where sin(g)
q
ﬁSNP(Q) = glin (5)
Kos
The resulting threshold across all the range bins for the

sample A-Scope is shown in the right hand graph of FigureF_ 3: disolay showi | hich h ded th
2, using the parametersy — 20, POaS'CFAR — 005 and 1g. 3: PPI display showing power values which have exceeded the

ks — (3WW/2) — 30. As can be seen. the point landmarks SOS-CFAR This is the input data for the RB-PHD-SLAM experiments.
os - . L]

are detected, while most of the land reflections are supgdess
This is because land reflections have the appearance dadrcluttform to Cartesian form using a weighted 4 point transfororati
measurements. This is useful for SLAM applications, sinceechnique, to minimise the effects of pixelation at largerges
extended landmarks are more difficult to reliably paranister [16]. This form of the scan constitutes a Cartesian grid ¢e)a
as stable landmarks. The resulting map however then reflectsith power valuess'9(z, ), represented as colour values.
only point-like objects. In the measurement data, landmarks rarely occupy a single
A 360° Plan Position Indicator(PPI) scan of the coastal range bin. Therefore, to suppress the high frequency signal
environment showing the power values which have exceedefilictuations, which have successfully passed through the OS
the OS-CFAR threshold, is shown in Figure 3. All receivedCFAR detector, a Gaussian filter was applied to the raw data.
power valuessS'™(q) < SOSCFAR(¢) have been removed from The 2D Gaussian low pass filter [17] was convolved with the
the scan as assumed noise or sea clutter. Each of the reghainiregions of the scan identified as landmarks by the OS-CFAR
power valuesS™n (q) > SOSCFAR ) were considered as valid threshold.
point landmarks in the RB-PHD-SLAM experiments, each 3) Image Based Thresholdingfo further reduce noise in
accompanied by a uniquB3S“™R For the NN-EKF-SLAM  the image, a simple threshold was applied and all valueswbelo
experiment, this landmark set, which still contains marigefa the threshold were set to zero. The value was selected based
alarms, had to be further reduced, based on image smoothimgn a histogram of the Gaussian smoothed radar measurements
techniques. over the whole sequence. A suitable threshold $6t(z, )
2) Image Based Smoothing - Gaussian Filterifdased on  was then selected below which, most of the returns were
the point landmark detections from the OS-CFAR thresholdassumed to still constitute noise or sea clutter.
the regions of the measurement data are further examined to 4) Image Based ClusteringClustering is the term used to
assess their likelihood of representing stable landmarks. identify parts of the radar image which belong to the same
received power data was first converted from its naturalrpolalandmark. This is achieved by combining all connected pgixel

-5000 -4000-3000-2000-1000 O 1000 2000 3000 4000 50(
Distance / m



which have non-zero value into one cluster. Figure 4 showss th(Figure 3) directly, without the need to resort to such ad-ho
result of clustering the thresholded image. Different aodcare  clutter/noise reduction techniques.

V. THE MARINE BASED SLAM ALGORITHMS

This section describes the landmark-based SLAM algorithm
implemented and analysed in this paper.

7) The ASC Process ModelJnlike ground based vehi-
cles which are generally restricted to forward facing mmwotio
dynamics, a sea-based ASC is subject to numerous uncertain
disturbances such as currents and wind, moving the ASC in
any arbitrary direction. To account for these differendes t
following non-linear process model is adopted

Distance / m

= xp_1+ Ve 1ATy cos(Pr—1 + ddp—1) + v,

U = Yk—1+ Vic1 ATy sin(dp—1 + d¢p—1) + vj_,

b = Gp_1+0¢k_1+vl (6)
wherezy, yr and ¢y represent the Easting, Northing and ASC

5000 —4000 3000 —2000 ~1000 O 1000 2000 3000 4000 heading angle with respect to north at tirhe This can be

Distance / m expressed in vector form using the vehicle’s state ve&tpe=
I

Fig. 4: Clustering and landmark estimation, based on a thresholded,[:lc’~c Ye Ok
Gaussian smoothed PPI scan. This is the input data for the NN-EKF-

SLAM experiments. Xy = Fy(Xg—1,Ur—1) + vp—1 (7)

where F,() corresponds to a vehicle motion vector function
encapsulating the three Equations 6 digl, represents a
vector comprising the input velocity signal and the meagure
ngular change - i.el/;,_; = [Vk_1 d¢r_1]T, recorded by
ff on board single axis gyroscépeyy_,, vy_, and v;f_l

used to identify different clusters.

5) Landmark Labelling:Two characteristics of each cluster
are extracted in this step. First the position of the cenfre o
area in Cartesian coordinates are determined and second IE

area of the cluster is determined in terms of pixel numbaet, anrepresent random perturbations in the ASC motion due to
converted to square meters.

; . external sea forces and are modelled by white Gaussianisigna
The large clusters which represent parts of islands or th X y whi usslansig

. . : L gncapsulated in the noise vectgr_; = [v¥ , vY v? T,
mainland were not used in the SLAM experiments. This 'SATk — 4 —t,_, is determined from tht[a ’Fnéas’lcjrémgntl]rate of
because the radar can only detect their outline partialychv N . N :

. ) . ... _the gyro. In this experiment, for simplicity, = V;—; and is
leads to .ur_lrellabltla landmarks of changl_ng size and pOSItlonchosen a priori due to the lack of suitable Doppler VelocibgL
oo i sz o clstrs deleine 0 b AL T el proces o i e 1

S yp f the SLAM algorithms, developed for comparison purposes,
In Figure 4, the extracted landmarks are processed a3 this paper
described above and superimposed on to the cluster-image. Paper.
The areas of the red circles correspond to the area of eacd RrEs sLAM with the PHD Filter
cluster, and their centres are located at the centres ofadrea
each cluster. In this example, clusters smaller than/28@nd

larger than 20000r2, as well as all landmarks within a radius

1) The RFS Measurement Modélhe primary exterocep-
tive measurement sensor is the X-band radar. Such a sensor is
of 300 meters of the radar. were deleted. prone to missed detections, false alarms, measuremerg nois

6) Comments on Landmark Reduction Techniqu@garly and data association uncertainty. To encapsulate suclkesour

with such image processing based techniques, there are mafif,uncertainty, the RFS measurement model is adopted
parameters which can be set to achieve a set of clusters. z D X

. . o = ) UCr(X 8
While the OS-CFAR detector is based on a principRgp ™~ b U k(s Xp) U C(X) ®)
value, clear violations of the CFAR assumptions cause many _ _
more false alarms than those statistically expected. Ttagém Wwhich incorporates the set based landmark detections
smoothing methods high-lighted here are therefore impleDx(m, Xx) and the spurious measuremeitts(X;). Land-
mented as a simple means to reduce the number of false alarni8arks within the set map\i; are referred to asn. The
In the SLAM results, it will be shown that state of the art, individual landmark detections} = [ri 6i]” comprise
vector based methods are unable to yield consistent esmat
without such techniques being applied a-priori. The preeskn 5Note that although the gyroscopic measurements are recotdédesk,

. . they are used to provide an estimate of the desired input ehampeading

RFS based SLAM estimator will however be shown to beat time k — 1. Hence the input value corresponding to the gyro information
capable of operating on the results of the OS-CFAR processas 6¢,_ .

meMy



relative range and bearing measurements from the ASC posghere A(m|X},) = pBS-CFAR(m\Xk)ngm’Xk) and,
at time k, given by

. PSSCFAR(m|X,) = the probability of detecting a land-
e = \/(xk’ — g8daN2 4 (y ¢ — gradan2 g (9) mark atm, from ASC poseXj.
. g — yader , cx (2| Xk) = PHD of the clutter RFE; in
0y = arctan [Wr} — ¢r—1jk—1 tw  (10) Equation 8 at timek.
where (i, 1) are the Cartesian coordinates of thi land- In contrast to vector based SLAM algorithms, the PHD map

mark, (z298" a2y represents the coordinates of the radarrepresentation allows for a natural ability to average uesat

location on the ASC and} andw! represent the radar range Maps. Map estimates frolV independent trajectory particles
and bearing noise at time respectively [9]. can be averaged into an expected map, even with map estimates
2) The PHD SLAM Filter:In a similar vein as the Fast- of different size and without having to resolve the intrapma
SLAM concept, the RFS-SLAM joint posterior can be fac- feature associations. Consequently both the expectedlgehi
torised when the map is represented as a conditional PDﬁf,aJefJTOW and featu.re map can bg de;t)ermlned a; foIIo\(/\i/)s:
conditioned on an entire vehicle trajectak. - i.e. Given the posterior set of V\./elghtéc‘ and particlesX; ;.
and corresponding map PH@%” (m|X(§f,)€),
Pr(Xo:k, Mi| 2ok, Unik—1, Xo) = N
Xo:k120:k, Uo:ke—1, X 201, Xo: 11 i i i i
Pr(Xo:xZ0:k, Uoik—1, Xo)pe (Mi| Z20:6, Xok)  (11) {77;(@)7Xé:;)€,0;(€)(m|Xé;;)€)} 7 (16)

where a Rao-Blackwellized implementation implies the map- =t

ping recursion is approximated by a Gaussian Mixture (GM)'and defining — EN n(i) then
PHD Filter, and the trajectory recursion by a Particle Filte =1k ’

[2]. Zo.r represents the set of all measurements from time R A
to k, Uy.x—1 represents all inputs from tineto & — 1 and X, Xor==)_ 9 x (17)
is the initial pose of the ASC. The calculation of the padicl =

weighting likelihood however, requires the evaluation of i ) )
The posterior PHD of the map is then the expectation of

91 (2| 201, Xow) = /p(ZkaMk|ZO:k717X0:k)§Mk; the trajectory-conditioned PHDs and thus
(12) LN |
which involves a set integral over all possible maps. Note vi(m| Xo.x) = :Zmi’)v,?)(mmé?,l). (18)
that this likelihood is simply the normalising constant of i3

the Bayes recursion for propagating the RFS map densit
Pk (Mg|Z0.1, Xo.x) In Equation 11. The weighting likelihood
can then be written,

)ff wy, = [vr(m|Xo.x)dm, is the mass of the posterior map
PHD, the expected map estimate can then be extracted by
choosing then; highest local maxima.
z |z _ 9 (Zk[ M, Xi)prje—1 (M| Xo:1,) Further implementation details of this algorithm, inclugli
k(2] Zo:k—1, Xok) = . o

e (M| Xo:x) 13) pseudo-code examples, are given in [2], [3].

By approximating the predicted and updated RFS map dens
ties as Poisson RFSs and setting the dummy varidkje =
{mehosen wheremthsenis a single landmark chosen according  For comparison purposes, an NN-EKF-SLAM implemen-
to a given strategy, the weighting likelihood can be detasdi  tation was carried out, based on the landmarks extracted
in closed form, as a function of the probability of detectwfin in Section IV-5. As noted, NN-EKF-SLAM could only be
the chosen landmarl9SCFAR mchosen ;) and the updated implemented on this greatly reduced landmark set, since the

E. NN-EKF-SLAM Implementation

and predicted PHDs of the map. numerous landmarks extracted by the OS-CFAR processor
The map is estimated with a GM implementation of theof Section IV-1, contained too many clutter measurements,
PHD predictor, causing immediate EKF filter divergence.

In contrast to RFS-SLAM, where the state to be estimated
vele—1 (M| Xoik) = ve—1 (M| Xow—1) +b(m|Xx) — (A4)  odicie of a vector representation of the vehicle’s ttajgc

whereb(m|X},) is the PHD of the new landmark RF8(X,,),  Xo.x and a set representation of the ma,, vector based

and corrector, SLAM methods proceed to estimate a singbént vectorstate

Cx = [Xx M;)T and hence provide an estimate of

ve(m| Xok) = vaik_1(m|Xox) |1 — POSCARm| X1 )+
k(M| Xo:x) = vgjp—1(m| Xo:x) D Rim|X%) D (el Zoe Unsr, Xo). (19)

A(m|X
Z AR z(x(§||Xk))v (€[ Xom)dé (15) Landmark association, based on the Nearest Neighbour Stan-
zez, FVIER) T Jeemy k/VkIk—115120:k dard Filter, was then carried out [18].




VI. COMPARISONS OFSLAM CONCEPTS ATSEA GPS cannot be relied upon to provide useful, on-the-fly direc
The ASC i rolled t ; dt tional inputs, its long-term positional information is @ideat
N was remote controfied 1o execute a curve raFeconstructing ground truth trajectory estimates.

jectory of over 1.8km, logging over 650 consecutive radar Figure 5 depicts the estimated ASC trajectories from each

scans at a rate of 0.5Hz in a trial run Iastln.g over 20 MINUES,¢ the MC runs in comparison with the GPS estimated path. A
Multiple loops were traversed. The analysis focusses finst o

. . . sample trajectory (red) from the assumed ASC motion model,
the location estimation errors from the RB-PHD-SLAM and P ) ry (red) u :

\ o i sing the measured gyroscope data, is also provided. The
NN-EKF-SLAM filters, followed by qualitative examinations using . g9y P I provi

£ th timated In thi t of X ts. th H—:'sults demonstrate that the RB-PHD-SLAM approach yields
otthe estimated maps. In tnis Set ot expenments, the groun ajectory estimates, which accurately reconstruct taeensed
truth locations of all of the actual sea vessels in the area w

t availabl d therefore th Id onlv b ed i ath, despite the sensing and vehicle modelling difficsltie
not available and therelore the maps could only be exammed | Figure 6 shows the estimated NN-EKF-SLAM path (la-

a qualitative manner, based on the known configuration of Se@elled) in comparison with the GPS and predicted, motion

vessels and the nearby island’s coastline. For the RB'PHDrhodeI based trajectories. In particular, maximum dispt

SLAM fllter, MC gnaly3|s IS presented basgd on 50 Sampleerrors of approximately 45m, over the 1.8km trajectory, ever
runs “S'”Q,loo tra]gctory partlcleslln each trial. noted for each algorithm. It should be remembered however,
1) Positional Estimation AnalysisThe ground truth ASC -t NN-EKF-SLAM was only possible due to the heavily

position estimates, based on the GPS data, are shown as fieyricted landmark set necessary for reliable data ztimui
labelled trajectories in Figures 5 and 6. Note that although 2) Map Estimation Analysiswithout ground truth heading
information, the quality of the resulting map estimate can b
.- — : : used to gauge the quality of the estimated ASC heading. Since
ESTtr';‘;:Ctte(‘)’rgic most of the point landmarks, and all of the extended landmark
(land masses), are stationary, the quality of the postenip
estimate from the temporal fusion of the measurement data
provides an indication of the quality of the pose estimates.
Using a linear function which relates signal power to Log-
Odds occupancy [12], the posterior occupancy grid can be
propagated as each X-band radar measurement arrives. A
zoomed view of the posterior map estimates from the estuinate
trajectory is provided in Figure 7. The fused map from the RB-
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Fig. 5: The expected trajectories from each of the 50 MC trials (blue),
compared to the GPS trajectory (green).
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£ 13471 Predicted ASC Path
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z . . . .
= 1 3465} Fig. 7: The estimated map from the RB-PHD-SLAM algorithm, in
> comparison to satellite imagery. The map be seen to coincide well
with the islands present as well as various sea surface objects.
1.346]'" Gps path
PHD-SLAM estimate can be seen to match ground truth with
13455 ] the island coastline and various surface objects cleaitjeev.

3.574 35745 3,575 3.5755 3.576 3.5765 3.577 . . - .
UTM Easting 105 Some of the successfully mapped objects, identified dutieg t

) _ ) experiments, are labelled in Figure 7.
Fig. 6: The NN-EKF-SLAM estimated path, the predicted ASC tra- T provide a comparison between the SLAM estimates
jectory from the assumed ASC motion model and the GPS trajectoryyom the RES based PHD filter and the vector based NN-



EKF approach, Figure 8 shows the results of NN-EKF-SLAMwere carried out with the state of the art SLAM methods
during the same trial. Figure 8 shows the estimated NN-EKFNN-EKF-SLAM. To be able to successfully execute NN-EKF-

Supply Ship:

Protruding Rocks

SLAM, the OS-CFAR radar detections needed to be post-
processed using image processing techniques, to gredtigee
the landmark set, in an attempt to reduce clutter measunsmen
to a minimum. Only then could any qualitative comparison of
NN-EKF-SLAM and the RB-PHD-SLAM filter take place.

Future work in marine environments should incorporate the
extended landmarks, and should examine the possibilifies o
joint mapping and landmark tracking from an ASC.
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. (1]
Fig. 8: NN-EKF-SLAM results, superimposed on a satellite image

of the area. The points correspond to estimated landmark locations
and their corresponding ellipsi correspond to the landmark8s™ [2
uncertainty regions, magnified by a factor of 10. The lines emanating
from the ASC correspond to the associated landmarks from the final
estimated ASC's location. As in Figure 6, the GPS (green), estimated®]
(blue) and predicted (red) ASC trajectories are shown.

[4]
SLAM state superimposed on a satellite image of the area. The
map landmarks shown are the final estimates at the end of the
run. The landmarks in the vicinity of the islands (lower pafrt  [5]
the figure) have large covariance values and are likely taltres
from clutter measurements, as they are sporadically intred 6]
and deleted by the map management algorithms. Most of the
mapped landmarks in the upper part of the figure corresponc{n
well with those shown in the extracted grid map of Figure 7.
All of the labelled landmarks, marked as supply ships, buoys
and protruding rocks, were independently identified dutirey (8]
experiments and correspond to those labelled in the RB-PHD-
SLAM results of Figure 7. (9]

VIl. SUMMARY

This paper examined the possibility of SLAM using an ASCI[10]
in a marine environment. Adopting an X-band radar as the
main exteroceptive sensor, the investigation demonsirituizt  [11]
despite the widespread presence of GPS information at sea,
the heading measurements can still be prone to large errgho,
In the experiments, relative heading information was ttoeee
provided by an inexpensive single axis, digital gyroscope.

Based on an automatic OS-CFAR point landmark detect0|[,1 3l
an RFS landmark based SLAM algorithm was developed for14]
the ASC. The point landmarks exploited were anchored suppl
ships and buoys. The algorithm demonstrated how useftﬁs]
results are realisable, even with difficult to model vehicle
dynamics and a lack of any input control measurementd?16l
Comparisons of the estimated maps demonstrate the merits ﬁf7]
SLAM for an ASC, given uncertain heading and exteroceptivgis]
sensor measurement information. Comparative experiments

Patrikalakis for their help during the sea trials.
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