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Purpose 
Describe the elements of a new, practical, Bayes-optimal, and  
theoretically unified foundation for multisensor-multitarget problems: 
“Finite-Set Statistics” (FISST). 
 
Finite-set statistics  is the basis for a fundamentally new, Bayes- 
optimal, and theoretically unified approach to SLAM and related  
robotics problems that is the focus of this workshop:   
 
 • Mullane, Vo, Adams, Vo:  “A random-finite-set approach to  
                Bayesian SLAM, IEEE T-Robotics, (27)2: 268-282, 2011.  
 • Mullane, Vo, Adams, Vo:  Random Finite Sets in Robotic 
               Map Building and SLAM, Springer, 2011.  
 
My purpose here is contextual:  to provide an overview of FISST and 
 to explain its pertinence for SLAM and similar applications       



    Simultaneous Localization and Mapping (SLAM) 

• Multiple moving robots explore an unfamiliar environment without 
     access to GPS or a priori map (terrain, architectural) information 
• Without human intervention and by employing only their oboard 
     sensors, the robots must detect and localize uknown stationary 
     landmarks (“features”) 
• From these landmarks they must construct, on-the-fly, a local map 
     of the environment   
• Then they must situate themselves within this map—along with any 
     unknown, moving, and possibly noncooperative targets 
 

 



    Important Points to Consider 

• The landmarks will be unknown, and of unknown, varying number 
 

• The robots will be unknown and of unknown, varying number 
 

• The sensor measurements—whether generated by robots, targets, 
     landmarks, or clutter—will be varying and of varying number 
 
• There is generally no a priori way to order the robots, the landmarks, 
     the targets, or the measurements 
 

 



    The Theoretical Challenge 

• Vector representations of SLAM scenarios are problematic 
 

• How can we measure the degree of deviation between between the 
actual map and a SLAM algorithm’s estimate of it (which will differ 

     not only in estimates of individual landmarks, but in their number)? 
 
• How can we claim that the algorithm’s estimate is “optimal” in a 

Bayesian sense? 
 

 



    The Approach:  Finite-Set Statistics 

• Formulate SLAM problems in terms of random finite set (RFS) theory 
 

• Generalize “Statistics 101” concepts to multitarget realm:  
multitarget probability laws, multitarget integro-differential calculus 

 
• From formal statistical models of sensors & targets, create RFS 

multisensor-multitarget measurement models 
 

• From formal statistical models of target motions (including 
appearance & disappearance) create RFS multitarget motion models 
 

• From the RFS motion & measurement models, construct “true” 
multitarget Markov densities and likelihood functions 

 
• From the Markov density & likelihood function, construct an optimal 

solution:  a multisensor-multitarget Bayes recursive filter 
 

• Construct principled approximations of the optimal filter—e.g., PHD 
filter, CPHD filter, multi-Bernoulli filter, etc. 
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Top-Down versus Bottom-Up Multitarget Data Fusion 

usual “bottom-up” approach  
to multitarget information fusion 

motion models 

data association 

localization 

tracking 

multitarget 
tracking 

heuristically integrate a 
patchwork of optimal or 
heuristic algorithms that 
address specific functions 

 

sensor models 

detection 
etc. 

multiple sensors, multiple 
targets = single system 

“top-down,” system-level  
approach 

specify statistical multitarget 
measurement & motion models  

Bayesian-probabilistic 
formulation of problem  

multisensor-multitarget 
recursive Bayes filter 

requires random set theory  

models & functions subsumed  
in optimally integrated algorithm 

I.D. 



The FISST Research Program 
Advance 1: 

unification of 
expert systems 

theory 

fuzzy logic Dempster- 
         Shafer rules Bayes 

unified 
Bayes 
filter 

Advance 2: 
unification of 
Level 1 fusion 

unified 
expert 

systems 

detection tracking identification unified 
Bayes 
filter 

Advance 3: 
unification of 

Level 1 sensor 
mgmt 

unified 
Level 1 
fusion 

objective 
   functions 

mission 
       goals 

principled 
approximation 

unified 
Bayes 
filter 

Advance 4? 
beginnings of a 

foundation for 
Levels 2/3? 

unified 
Level 1 
sensor 
mgmt 

representation 
of relationships 

group target 
    filtering 

principled 
approximation ? 

unified 
Bayes 
filter? 



Unified Information Fusion 

traditional data 
z Q 

quantized data 

α 
operator-extracted 

attributes 

φ 
DSP-extracted 

features 

S 
natural-language 

statements 

S1 ⇒ S2  
inference rules 

(from knowledge-base) 

random set 
generalized 
likelihood  
function 

andom set 
generalized 
likelihood  
function 

random set 
generalized 
likelihood  
function 

random set 
generalized 
likelihood  
function 

random set 
generalized 
likelihood  
function 

random set 
generalized 
likelihood  
function 

unified algorithms:  
   - multitarget tracking 
   - target ID  
   - sensor mgmt 
   - etc.   

also unifies much of expert- 
system theory:  Bayes, 
fuzzy, Dempster-Shafer, 
rule-based 



MHT VERSUS CPHD FILTER 
given time-sequence of measurement-sets:   Z(k) : Z1,…, Zk  

Approximate Multitarget Filters:  MHT, PHD, CPHD 

multi- 
hypothesis 

tracker (MHT)  

time  
prediction 

update using  
new data 

 
MEASUREMENT- 
TO-TRACK ASSN 

REQUIRED 

⋅⋅⋅ 
track 
table  

hypothesis 
list 

predicted 
tracks  

predicted 
hypotheses 

updated 
tracks  

updated 
hypotheses 

filter on probability hypothesis densities (PHDs) 

… → Dk|k(x|Z(k))  →  Dk+1|k(x|Z(k)) →  Dk+1|k+1(x|Z(k+1)) → …  PHD filter 
(introduced 2000) 

filter on PHDs 

… → Dk|k(x|Z(k))  →  Dk+1|k(x|Z(k)) →  Dk+1|k+1(x|Z(k+1)) → …  

… → pk|k(n|Z(k))   →  pk+1|k(n|Z(k)) 
filter on target-number distributions 

 →  pk+1|k+1(n|Z(k+1)) → …  
CPHD filter 

(introduced 2006) 

no measurement-to-track association required 

no measurement-to-track association required 



Algorithms Derived Using Finite-Set Statistics 

“classical”  
PHD filter 

finite- 
set 

statistics 

“classical” 
CPHD filter 

multisensor PHD 
and CPHD filters 

PHD/CPHD filters for 
unknown clutter 

and prob. detection 

PHD filter for state- 
dependent clutter  PHD/CPHD  

smoothers 

multiple motion model 
PHD/CPHD filters 

unified Bayes filters 
for nontraditional data 

unified tracking  
and sensor-bias  

estimation 

? PHD/CPHD filters 
for superpositional 
sensors (w/ McGill) 



Selected Applications 

tracking multiple moving  
targets in terrain 

simultaneous 
localization and 
mapping (SLAM) 

multitarget tracking 
in distributed networks 

direction-of-arrival (DOA)  
tracking of dynamic  

signal sources 

passive coherent  
localization  

(PCL) tracking 

tracking in  
video images 

multisensor- 
multitarget 

sensor  
management 

group-target tracking 

PHD 
and 

CPHD 
filters 

ground moving target  
indicator (GMTI) 

radar multitarget  
tracking 

(real-time “Bold Avenger”  
NATO exercise, 2007, 

FGAN/FKIE and EADS) 

underwater active- 
acoustic tracking 

(22 km, 6 hr, real-time pipeline 
tracking with a UUV, 

SeeByte and British Petroleum) 



Primary References 
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Artech House 2007 

2007 
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CPHD Filter 
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IEEE Trans.  
AES 2007 
 
 
 
2007  
IEEE AESS 
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The Random Set Filtering Website 

• United Kingdom mirror Prof. Daniel Clark,  D.E.Clark@hw.ac.uk 

– http://randomsets.eps.hw.ac.uk/index.html 
 

• Australian mirror  Prof. Ba-Ngu Vo,  ba-ngu.vo@uwa.edu.au 

– http://randomsets.ee.unimelb.edu.au/index.html 

RFS Filtering Website 

RFS-SLAM Website 
• Prof. Martin Adams,  martin@ing.uchile.cl 

– http://www.cec.uchile.cl/~martin/Martin_research_18_8_11.html 
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Foundation:  The Single-Target Bayes Filter 

⋅⋅⋅ 

Xk|k Xk+1|k+1 Xk+1|k 

single-target state space 

evolving random 
state-vector 

measurement 
collected by sensor 

observation space 

 fk|k(x|Zk)    fk+1|k(x|Zk)    fk+1|k+1(x|Zk+)) ⋅⋅⋅ 
time-update 
(predictor)  

measurement- 
update 

(corrector)  

Bayes 
probability 

distribution 
on target state 

  x  



Foundation:  The Single-Target Bayes Filter, 2 

target  
state 

accumulated  
measurements 
at time-step  k 

⋅⋅⋅ →  fk|k(x|Zk)  →  fk+1|k(x|Zk) 
predictor 

→  fk+1|k+1(x|Zk+1)  → ⋅⋅⋅  
corrector 

xk+1|k+1 ^ Bayes-optimal  
state estimation 

formal Bayes modeling 

formal statistical 
model of the motion 

of the target 

Xk+1 =  ϕk(x) + Vk 
deterministic 

motion 
model 

motion  
noise 

Zk+1  =  ηk+1(x) + Wk+1 

formal  
statistical  
measurement  
model of the 
sensor 

deterministic 
measurement 

model 

sensor  
noise 

fk+1|k(x|x′) formal Markov 
density 

calculus 

fk+1(zk+1|x) = L     (x) 
formal  
likelihood 
function 

calculus 

new 
measure- 

ment zk+1 zk+1 



Special Case:  The Kalman Filter 

xk+1 =  Fkx + Vk zk+1  =  Hk+1x + Wk+1 

N       (zk+1−Hk+1x) Rk+1 
N   (x−Fkx′) Qk 

→  N   (x−xk|k)  →  N      (x−xk+1|k)  →  N          (x −xk+1|k+1) → Pk|k Pk+1|k Pk+1|k+1 
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fX(x) single-target 
filtering 

probability density 
functions of random vector  X 

pX(S) probability measures /  probability- 
mass functions of random vector   X 

formal Bayes 
modeling 

(prevent model- 
mismatch due to a 

heuristics-generated 
fictitious sensor!) 

δpX 
(S) δx 

integrals 
& derivatives 

fX(x)dx ∫ 

Mathematical Core of Single-Target Bayes Filter 

ordinary calculus permits derivation of concrete algorithm formulas 



fΨ(Y) multitarget 
filtering 

multi-object probability density 
functions of random finite set  Ψ   

βΨ(S) belief-mass functions of  
random finite set  Ψ  

formal Bayes 
modeling 
(prevent model- 

mismatch due to a 
heuristics-generated 

fictitious sensor!) 

δβΨ 
(S) δY 

set integrals 
& derivatives 

fΨ(Y)δY ∫ 

δGΨ 
[h] δY 

set integrals & 
functional derivatives 

fΨ(Y)δY ∫ 
principled 

approximation GΨ[h] probability generating functionals  
(p.g.fl.’s) of random finite set  Ψ  

Mathematical Core of Multitarget Bayes Filter 



Multi-Object Calculus, 1 

δGΨ   

δY   
[h] =                  [h] 

δnGΨ   
δy1⋅⋅⋅δyn 

δGΨ   
δy   

[h] = lim 
ε→0 

GΨ[h+ε⋅δy] − GΨ[h]  
ε 

functional 
derivatives 

Dirac delta function 

probability generating 
functional (p.g.fl.) GΨ[h] =    hY ⋅ fΨ(Y)δY  ∫ 

hY =              h(y) 

set  
integral 

Πy∈Y 
functional power 

set 
integrals 

fΨ(Y)δY  =            fΨ({y1,…,yn})dy1⋅⋅⋅dyn ∫ Σ n! 
1 

n=0 

∞ 

∫ 



Multi-Object Calculus, 2 

fΨ(Y) =  multitarget 
distribution [0] 

δGΨ   
δY   

functional 
derivative 

probability 
hypothesis  

density (PHD) 
DΨ(y) =   =     fΨ({y}∪Y)δY  ∫ [1] 

δGΨ   
δy   

multitarget calculus permits derivation of concrete algorithm formulas 
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Multisensor-Multitarget Statistics 

single-target 
state space 

x1 

xn 
x2 

x3 ,… 

…,xn-1 

sensors 

single-target  
random state-vectors 

single-sensor  
random measurement-vectors 

sensor 
measurement 

spaces z3 ,… z2 

zn …,zn-1 z1 

random finite set (RFS) 
of targets ( n is also random) 

UNIFIED MULTITARGET STATE SPACE 

Ξ = {x1,…,xn} 

UNIFIED MULTISENSOR MEASUREMENT SPACE 

random finite set (RFS) of  
measurements ( m is also random) 

Σ = {z1,…,zm} 

multisensor, multitarget transformed to single-sensor, single-target 



Statistical Representation of a Multitarget System 

random state-set 
a particular formulation 

of a random point process 
(stochastic geometry 

formulation 

Ξ 

single-target state space 

random density/ 
random measure 

(point process theory 
formulation) 

sum the Dirac deltas  
concentrated at the  
elements of  Ξ 

∑
Ξ∈

Ξ =
y

y xx )( )( δδ

equivalent notations for a (multidimensional) simple point process 



Systematic Multitarget Modeling & Approximation  
formal multitarget 

statistical model of the 
motions of all targets 

1. 
formal multisensor-multitarget   

statistical measurement model of  
ACTUAL INFORMATION SOUCES 

sensors, attributes, 
features, natural- 

language statements, 
inference rules 

2. 

multitarget calculus 

“true” multitarget Markov density 
 fk+1|k(X|X′) 

3. 
multitarget calculus 

“true” multitarget likelihood function 
 fk+1(Z|X) 

4. 

− no information lost 
− no extraneous information added 

“true” multitarget Bayes filter 
(Bayes-optimal multitarget  detection & tracking) 

fk|k(X|Z(k)) 
5. 

− no information lost 
− no extraneous information added 

multitarget calculus 

p.g.fl. multitarget Bayes filter 
(less complex formulas) 

Gk|k[h|Z(k)] 
6. 

− no information lost 
− no extraneous information added 

multitarget calculus 

PHD & CPHD filters 
(approximate multitarget detection & tracking) 

Dk|k(x|Z(k)),  pk|k(n|Z(k)) 
8. 

i.i.d. cluster process approximation 

approximate p.g.fl. multitarget Bayes filter 
(algebraically tractable formulas) 

Gk|k[h|Z(k)] 
7. 



Systematic Multitarget Modeling & Approximation, 2 

Zk+1  =  Tk+1(X) ∪ Ck+1 

multitarget   
measurement  
model 

fk+1(Z|X) 
true multitarget 
likelihood 
function 

multitarget 
motion model 

Xk+1 =  Φk(X) ∪ Bk 

fk+1|k(X|X′) true multitarget 
Markov density 

multitarget  
calculus 

multitarget  
calculus 

⋅⋅⋅ →  Gk|k[h]    →    Gk+1|k[h] →      Gk+1|k+1[h]  → ⋅⋅⋅  
p.g.fl. form of multitarget Bayes filter 
(optimal, intractable, but algebraically simpler) 

⋅⋅⋅ →  fk|k(X|Z(k))  →  fk+1|k(X|Z(k)) 
multitarget Bayes filter 
(optimal but usually intractable solution) 

→  fk+1|k+1(X|Z(k+1))  → ⋅⋅⋅  

⋅⋅⋅ →  Dk|k(x)    →    Dk+1|k(x) →      Dk+1|k+1(x)  → ⋅⋅⋅  
PHD approximation of multitarget Bayes filter (OR OTHER APPROXIMATE FILTERS) 
(sub-optimal) 
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The Multitarget Bayes Filter 

multi-target motion 

state space 

five targets three targets 

multitarget 
Bayes filter   fk|k(X|Z(k)) 

time  
prediction    fk+1|k(X|Z(k)) 

update using  
new data    fk+1|k+1(X|Z(k+1)) ⋅⋅⋅ 

fk|k(∅|Z(k))              (probability that there are no targets present) 
fk|k({x1}|Z(k)           (probability of one target with state  x1)  
fk|k({x1 ,x2}|Z(k))     (probability of two targets with states  x1 ,x2)  
         … 
fk|k({x1 ,..., xn}|Z(k)) (probability of  n targets with states  x1 ,..., xn)  

multitarget 
probability 

density 
function 

random 
observation- 

sets  Z  produced 
by targets 

observation space 



The Multitarget Bayes Filter, 2 

⋅⋅⋅ →  fk|k(X|Z(k)) 

multitarget 
state 

accumulated multisensor-multitarget  
measurements at time-step  k 

Zk+1  =  Tk+1(X) ∪ Ck+1 

formal 
multisensor- 
multitarget   
measurement  
model of all 
info sources 

target- 
generated 

observations 

clutter 
observations 

formal multitarget 
model of the 

motions of all targets 

Xk+1 =  Φk(X) ∪ Bk 
persisting 

targets 

new 
targets 

⋅⋅⋅ →  fk|k(X|Z(k))  →  fk+1|k(X|Z(k)) 
predictor 

→  fk+1|k+1(X|Z(k+1))  → ⋅⋅⋅  
corrector 

Xk+1|k+1 
^ Bayes-optimal multitarget  

state estimation 

fk+1|k(X|X′) formal multitarget 
Markov density 

multitarget calculus 

fk+1(Zk+1|X) = L     (X) 

formal  
multisensor- 
multitarget 
likelihood 
function 

multitarget calculus 

Zk+1 

formal Bayes modeling 



Conventional Multitarget Filtering (multi-hypothesis correlation trackers) 

multitarget 
Bayes filter 

(optimal)  

 fk|k(X|Z(k)) 
time  

prediction    fk+1|k(X|Z(k)) 
update using  

new data    fk+1|k+1(X|Z(k+1)) ⋅⋅⋅ 

multi- 
hypothesis 

correlator 
tracker  

time  
prediction 

update using  
new data ⋅⋅⋅ 

track 
table  

hypothesis 
list 

predicted 
tracks  

predicted 
hypotheses 

updated 
tracks  

updated 
hypotheses 

approximation approximation approximation 

predicted multitarget  
motion 

targets 

measurements 



Conventional Multitarget Tracking 

o 

simultaneous 
estimates of 
positions of targets 
1 and 2, via data 
association and 
parallel Kalman 
filters 
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Probability Hypothesis Density (PHD) Filter 

 fk|k(X|Z(k))    fk+1|k+1(X|Z(k+1))    fk+1|k(X|Z(k)) ⋅⋅⋅ ⋅⋅⋅ multitarget 
Bayes filter 

(optimal)  

observation space 

single-target state space 

time-update 
step (predictor) 

data-update 
step (corrector) 

⋅⋅⋅ ⋅⋅⋅ Dk+1|k(x|Z(k)) Dk+1|k+1(x|Z(k+1)) Dk|k(x|Z(k)) 1st-moment 
(PHD) filter 

compress to multi- 
target first moment 

compress to multi- 
target first moment 

compress to multi- 
target first moment 

computational complexity   O(mn) ,   n = no. targets,   m =  no. measurements  



5 peaks (greatest target densities) 
correspond to locations of 7 

partially resolved, closely spaced targets 
(but target number correctly estimated as 7) 

x 

target  
density,  

D(x) y 

7 targets moving 
abreast in parallel 

Example of a PHD 

PHD represents targets first as a group, then as individual targets 



Probability Hypothesis Density:  Picture 

state space (discrete) x0 

one-state instantiations 
{x1} of  Ξ 

p3 

p1 
p2 

p4 

two-state instantiations 
{x, x2} of  Ξ p6 p5 

p7 
p8 

p9 
p10 

three-state instantiations 
{x, x2, x3} of  Ξ 

p11 

p13 p12 

four-state instantiations 
{x, x2, x3, x4} of  Ξ p14 

p15 
p16 

p17 

=  probability of the  
    hypothesis:  “the  
    multitarget system  
    contains a target with state  x0“ 

DΞ(x0)  =  Pr(x0 ∈ Ξ)   
            =   p1 + p6 + p9 + p11 + p16 



The Cardinalized PHD (CPHD) Filter 

 fk|k(X|Z(k))    fk+1|k+1(X|Z(k+1))    fk+1|k(X|Z(k)) ⋅⋅⋅ ⋅⋅⋅ multitarget 
Bayes filter  

observation space 

single-target state space 

⋅⋅⋅ ⋅⋅⋅ Dk+1|k(x|Z(k)) Dk+1|k+1(x|Z(k+1)) Dk|k(x|Z(k)) 
CPHD filter 

compress compress compress 

pk|k(n|Z(k)) ⋅⋅⋅ pk+1|k(n|Z(k)) pk+1|k+1(n|Z(k+1)) ⋅⋅⋅ 

PHD 

target-no. 
distribution 

computational complexity   O(m3n) ,   n = no. targets,   m =  no. measurements  



The PHD/CPHD Filters and Closely-Spaced Targets  

targets are sufficiently separated 
w/r/t sensor resolution that they 

can be tracked individually 
using conventional multitarget 

filters or by CPHD filter 

PHD / CPHD filters permit detection and tracking of multiple targets  
when conventional approaches begin to perform poorly 

targets are so closely spaced 
w/r/t sensor resolution that  

conventional filters 
begin to break down 

as targets begin to separate, 
CPHD filter begins to track 

them individually 

CPHD filter tracks targets individually 

“tracking barrier” 

CPHD filter tracks closely-spaced 
targets as a group, while accurately 
estimating no. of targets in group 



The PHD/CPHD Filter and Large Target Clusters 
PHD / CPHD filter permits tracking of dense target clusters when  

conventional approaches begin to perform poorly 

group targets group targets 
group targets 

group targets so many targets are present, and  
relatively closely spaces, that conventional  

multitarget filters begin experiencing  
computational difficulties “tracking barrier” 

CPHD filter tracks target-cluster 
targets as a group, while accurately 
estimating no. of targets in group 

group targets 



Conclusions 

• Finite-set statistics is the basis for a new, Bayes-
optimal, and theoretically unified approach to SLAM 
 

• Permits a more principled way of approaching SLAM 
 

• Promising new SLAM algorithms 

• For more details on finite-set statistics   
– Handbook of Multisensor Data Fusion, 2nd Ed., Chapter 16 
– Statistical Multisource-Multitarget Information Fusion 
– “Statistics ‘101’ for multisensor, multitarget data fusion” 
– papers  listed in bibliography of the workshop paper  



Thank You! 
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