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Abstract—This tutorial paper describes the elements of a new, 
practical, Bayes-optimal, and theoretically unified foundation for 
multisensor-multitarget problems.  This foundation, called 
Finite-Set Statistics (FISST), is the basis for a fundamentally new, 
Bayes-optimal, and theoretically unified approach to 
Simultaneous Localization and Mapping (SLAM) and related 
robotics applications.    

Keywords—finite-set statistics, FISST, multitarget Bayes filter, 
PHD filter, CPHD filter, random sets, stochastic geometry 

I.  INTRODUCTION 
The purpose of this tutorial paper is to describe the 

elements of a new, practical, Bayes-optimal, and theoretically 
unified foundation for multisensor-multitarget problems.  This 
foundation, called Finite-Set Statistics (FISST) [11-13], has 
attracted great worldwide research interest over the last decade 
because of its applications in multisource-multitarget detection 
and tracking, sensor management, and information fusion.   

In particular, it is the basis for a fundamentally new, Bayes-
optimal, and theoretically unified approach to Simultaneous 
Localization and Mapping (SLAM) and related robotics 
applications [1, 21-25].  The other contributors to this special 
issue will describe this work in greater detail.  The reader’s 
attention is directed especially to the book [25].  My purpose 
here is contextual:  to provide an overview of FISST and to 
explain its pertinence for SLAM and similar applications.        

    As a beginning, consider the SLAM problem at its most 
general.  Multiple moving robots explore an unfamiliar 
environment without access to GPS or to a priori map (terrain, 
architectural) information.  Without human intervention and 
employing their onboard sensors only, the robots must detect 
and localize unknown stationary landmarks (“features”), and 
from these landmarks construct, on-the-fly, a local map of the 
environment.  Then they must situate themselves and each 
other—as well as any unknown, moving, and possibly 
noncooperative targets—within this map, again on-the-fly. 

Important things to notice are that (1) the landmarks will be 
unknown and of unknown, varying number; (2) the robots will 
be unknown and of unknown, varying number; and (3) the 
sensor measurements—whether generated by robots, 
landmarks, targets, or clutter—will  be varying and of varying 
number.  Additionally, there is no a priori way to order the 
robots, the landmarks, the targets, or the measurements.   

Because of this, the mathematical representation of SLAM 
scenarios using vectors is problematic for a number of reasons.  

First, vector representation presumes not only that a collection 
of objects is ordered a priori, but that the objects are of fixed 
number.  Second, the introduction of a priori orderings, into a 
problem that has none, may unwittingly introduce information 
extraneous to the problem and—along with it—unrecognized 
statistical biases.   

Third and more crucially, how does one measure 
performance—or, more generally, speak of optimal 
performance?  For example, suppose that we have 
instrumented a SLAM scenario so that the landmarks are 
known with some precision.  At any given instant a SLAM 
algorithm will construct a map that is different.  Not only the 
landmarks will be different, but also their number.  How can 
we, in a theoretically defensible manner, measure the degree of 
deviation between the entity to be estimated (the actual map) 
and the algorithm’s estimate of it?  More generally, how can 
we claim, in a theoretically defensible manner, that the 
algorithm’s estimate is—at least to within the degree of 
approximation that is assumed—optimal in a Bayesian sense? 

The purpose of finite-set statistics is to answer questions 
such as these in a theoretically rigorous, unified, and yet 
engineering-practical manner.  It consists of the following 
sequence of conceptual steps [11-13]:                

• Formulate multisensor-multitarget problems using the 
geometrical and mathematically simplest version of 
point process theory—random finite set (RFS) theory.    

• Generalize familiar “Statistics 101” concepts—
integral, derivative, probability measure, probability 
density function, to multisensor-multitarget problems.  
This results in the concepts of set integral and 
derivative, functional derivative, belief measure, 
probability generating functional (p.g.fl.), and so on.  
This “multi-object calculus” includes “turn-the-crank” 
rules for computing set and functional derivatives:  
power rules, product rules, chain rules, and so on.    

• From formal statistical models of the sensors and 
targets—including models for sensor noise, probability 
of detection, field of view (including occlusion), 
clutter, etc.—create a formal RFS multisensor-
multitarget measurement model. 

• From formal statistical models of target motions—
including motion models for individual targets and 
models for target appearance and disappearance—
create a formal RFS multitarget motion model.   



• From the RFS multisensor-multitarget measurement 
model, construct a multisensor-multitarget likelihood 
function.  This likelihood function is “true” in that it 
preserves all information in the RFS measurement 
model, without inadvertently introducing information 
extraneous to the problem.  Its explicit construction 
requires belief measures and set derivatives.   

• From the RFS multitarget motion model, construct a 
multitarget Markov transition density.  This Markov 
density is “true” in that it preserves all information in 
the RFS motion model without introducing extraneous 
information. Its construction also requires belief 
measures and set derivatives.   

• From the multisensor-multitarget likelihood function 
and Markov density, define a multisensor-multitarget 
Bayes filter.  Extract information of interest—the 
number of targets and their states—using Bayes-
optimal multitarget state estimators.  

• Since multisensor-multitarget Bayes filters are 
computationally intractable in general, derive 
approximate multisensor-multitarget filters. These 
filters are “principled” in that they are statistical rather 
than heuristic, and in that they preserve, in approximate 
form, the information contained in the original RFS 
measurement and motion models.  Construction of 
these filters requires p.g.fl.’s, functional derivatives, 
probability hypothesis densities (PHDs), and 
cardinality distributions.   

• The most widely known and investigated of these 
approximate filters are the PHD filter and its 
generalization, the cardinalized PHD (CPHD) filter.  

• These filters can then be applied to the SLAM 
problem, in the manner to be described in Section V-C.  
In particular, a PHD can itself be interpreted as an 
“average” SLAM map.     

In the remainder of the paper I briefly explain these points.  
I review single-sensor, single-target Bayes filtering theory in 
Section II.  Multi-object integro-differential calculus is 
summarized in Section III, and its application to the statistical 
modeling of multisensor-multitarget systems in Section IV.  
The multisensor-multitarget Bayes filter is described in Section 
V, and its PHD/CPHD filter approximations in Section VI.  
Conclusions are in Section VII.  

II. SINGLE-SENSOR, SINGLE-TARGET THEORY:  REVIEW 
In this section I review single-sensor, single-target Bayes 

filtering theory [12, Chapter 2]:  statistical modeling (II-A), the 
Bayes filter (II-B), and Bayes-optimal state estimation (II-C).     

A. Motion and Measurement Models 
A discrete-time nonlinear dynamical system is described by 

a target-motion model and a sensor measurement model: 

Xk+1|k  =  ϕk(x,Wk)                                       (1) 

Zk+1  =  ηk+1(x,Vk+1)                                  (2) 

where  Vk+1  (sensor noise) and  Wk    (system or “plant” noise) 
are random vectors.  In the additive-noise model case, simple 
integral and differential calculus techniques lead to a Markov 
transition density and a likelihood function of the form   
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where  z  is a measurement in the single-sensor measurement 
space  Z0  and  x  is s state in the single-target state space X0.   

B.  Single-Sensor, Single-Target Recursive Bayes Filter  
The statistical time-evolution of such a dynamical system is 

described by a recursive Bayes filter that propagates a 
probability distribution on the target state   x, 

… → fk|k(x|Zk) → fk+1|k(x|Zk) → fk+1|k+1(x|Zk+1) → …       (5) 

Here,  Zk :  z1,…, zk  is the time-sequence of measurements and 
the filter is defined by the equations 
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C. Bayes-Optimal State Estimation  
Information of interest—target position, velocity, identity—can 
be extracted from  fk|k(x|Zk)  using a Bayes-optimal state 
estimator.  A Bayes-optimal estimator minimizes the posterior 
expected Bayes risk with respect to a particular cost function 
([12], p. 63).  Familiar examples are the expected a posteriori 
(EAP) and maximum a posteriori (MAP) estimators:  
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III. THE RFS MULTI-OBJECT CALCULUS  
In this section I introduce the elements of the FISST multi-

object calculus [12, Chapter 11]:  set integrals (III-A), 
functional, functional derivatives and set derivatives (III-B), 
random finite sets, belief measures, and multi-object 
probability distributions (III-C), and probability generating 
functional and probability hypothesis densities (III-D).  

A. Multi-Object Density Functions and Set Integrals  
Let  u  denote the units of measurement of the elements  y  in 
the space  Y0  (a single-sensor measurement space or a single-
target state space).  Let  Y   denote an arbitrary finite subset of  
Y0, the empty set included.  Then a nonnegative function  f(Y)  
of  Y   is a multi-object density function if the units of  f(Y)   are  
u−|Y| .  Given such a density function, its set integral is  
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B. Functionals, Functional Derivatives, and Set Derivatives 
A functional F[h]  is a real-valued function whose argument 

is a function  h(y).  Its directional derivative at  h′(y)  is  
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Setting  h′ =  δy   we get the functional derivative of  F  at  y:1
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If Y = {y1,…, yn}  with  |Y| = n  then the functional derivative is 
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Let  φF(T) = F[1T]  be a set function defined on any closed 
subset  T  of  Y0.  Then its set derivative is 
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C. Random Finite Sets, Belief Measures, and Multi-Object 
Probability Distributions  
Let  Y   be the space of all finite subsets of  Y0,  and let  Y  

be endowed with the Fell-Matheron “hit-and-miss” topology of 
stochastic geometry [12, p. 711].  A random finite subset (RFS)  
Ψ  ⊆  Y0  is a random variable on  Y.  The belief measure (a.k.a. 
belief-mass function) of    Ψ  is2
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βΨ(T)  =  Pr(Ψ ⊆ T).                          (17) 

The probability distribution of  Ψ  is the multi-object 
probability density function  

 .                         (18)          

D. Probability Generating Functionals and PHDs 
The probability generating functional (p.g.fl.) of  Ψ  is   
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where  0 ≤ h(y) ≤ 1  is a test function on  Y0, where the integral 
is a set integral, and where   hY  =  1  if  Y = ∅   and  hY  = Πy∈Y 
h(y)  otherwise.  Note that    
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The cardinality distribution of an RFS  Ψ  is  
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1  This is a heuristic definition.  Functional derivatives can be defined 
rigorously as a type of Radon-Nikodým derivative.  
2 βΨ(T)  is equivalent to the probability measure  pΨ(O) = Pr(Ψ∈O) on the 
Borel-measurable subsets  O  of the Fell-Matheron topology [12, p. 711]. 

The probability hypothesis density of an RFS  Ψ  is defined 
equivalently by the equations 
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The PHD is a multi-object statistical analog of the single-
object concept of an expected value.   Its integral  

∫ ΨΨ = yy dDN )(  is the expected number of objects in the 

scene.  The value  DΨ(y)  is the density of objects in  Ψ  at the 
point  y.            

IV. RFS STATISTICAL MODELING OF MULTISENSOR-
MULTITARGET SYSTEMS  

In this section I summarize RFS models:  multitarget 
motion models (IV-A), multisensor-multitarget measurement 
models (IV-B), multitarget Markov densities (IV-C), and 
multisensor-multitarget likelihood functions (IV-D).  

A. Multitarget Motion Models 
Suppose that at time-step  k   the targets have state-set  X′  = 

{x′1,…,x′n′}  with  n′  = |X′|.  Then in the transition to time-step  
k+1,  some targets will persist while others disappear (target 
“death”); whereas other targets will appear, either generated by 
the original targets (target “spawning”) or independently of 
them (target “birth”).  Therefore, the random state-set   Ξk+1|k   
at the next time-step will have the form ([12], Chapter 13) 

Ξk+1|k   =   Ξk(x′1)  ∪… ∪   Ξk(x′n′) ∪ Bk                        (23)    

where   Ξk(x′)  is the RFS of targets originating with a target 
with state  x′;  and where  Bk  is the RFS of targets that appear 
independently of previous targets.  In turn,    

Ξk(x′)  =   Πk(x′)  ∪  Sk(x′) .                          (24)   

Here  Sk(x′)  is the RFS of new targets spawned by  x′.  Also,   
Πk(x′)  is an RFS with  |Πk(x′)|  ≤ 1—that is,   Πk(x′)  =  ∅  if   
x′  disappeared, and Πk(x′)  is a singleton set if it persisted. 

B. Multisensor-Multitarget Measurement Models 
Suppose that at time-step  k+1   the targets have state-set  

Xk+1 = {x,…,xn}  with  n  = |Xk+1 |.  Then the set of collected 
measurements will have the form (see [12], Chapter 12) 

Σk+1   =   Σk+1(X)   ∪ Ck+1                                   (25) 

where  Σk+1(X)   is the set of measurements generated by all of 
the targets, and where  Ck  is the RFS of measurements that 
originate with no target (clutter and/or false alarms).  Assume 
that all target-generated measurements originate with single 
targets.  Then this becomes  

Σk+1   =   Σk+1(x1)  ∪… ∪  Σk+1(xn) ∪ Ck+1                   (26) 

where   Σk+1(x)  is the RFS of measurements generated by a 
target with state  x.  In the simplest case,  |Σk+1(x)|  ≤  1—that 
is, any target generates either a single measurement or no 
measurement at all.  In this case   pD(x)   =  Pr(Σk+1(x)≠∅)  is 
the probability of detection of a target with state  x.   



C. Multitarget Markov Densities  
Suppose that we are given a multitarget motion model  

Ξk+1|k   as in (23).  From (17) its belief measure is 
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From (18), the multi-object probability distribution that 
uniquely corresponds to this belief measure is    
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This is the multitarget Markov transition density corresponding 
to the multitarget motion model (23)—see [12], Chapter 13.  It 
is the probability (density) that targets with state-set  X′  at 
time-step  k  will transition to targets with state-set  X  at time-
step  k+1.  Using the “turn-the-crank” rules of multi-object 
calculus—see [12], pp. 386-391, and [2]—it is possible to 
construct explicit formulas for (28).   

D. Multisensor-Multitarget Likelihood Functions 
Given a multisensor-multitarget measurement model  Σk+1   

as in (25), from (17) its belief measure is 

)|Pr()|( 11
XTXT kk

⊆Σ= +Σ +
β .                 (29) 

From (18), its multi-object probability distribution is    
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This is the multisensor-multitarget likelihood function 
corresponding to the multisensor-multitarget measurement 
model (25)—see [12], Chapter 12.  It is the probability 
(density) that a measurement-set  Z  will be generated at time-
step  k+1  if targets with state-set  X  are present.  Using the 
“turn-the-crank” rules of multi-object calculus, it is possible to 
construct explicit formulas for (30).   

In the multisensor case, the measurement-set has the form  
s
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where  
j

Z   denotes the measurement-set collected by the  jth  
sensor.  If the sensors are conditionally independent of state,the 
multisensor-multitarget likelihood function has the form  
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where  )|(1 XZf
jj

k+   is the multitarget likelihood function for 
the  jth  sensor. 

V. THE MULTISENSOR-MULTITARGET BAYES FILTER  
In this section I review the elements of multisensor-

multitarget Bayes filtering:  the multisensor-multitarget Bayes 
filter itself (V-A), Bayes-optimal multitarget state estimation 
(V-B), and the relevance of the multisensor-multitarget Bayes 
filter to Bayes-optimal SLAM (V-C).  

A. The Multisensor-Multitarget Bayes Recursive Filter  
This filter propagates a multitarget probability distribution 

on the multitarget state   X  ([12], Chapter 14)  

… → fk|k(X|Z(k)) → fk+1|k(X|Z(k)) → fk+1|k+1(X|Z(k+1)) → …  (33) 

Here,  Z(k) :  Z1,…, Zk  is the time-sequence of collected 
multisensor measurement-sets and  X  is the multitarget state-
set (a finite subset of  X0).  The filter is defined by the 
following multitarget analogs of (6-8):  
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where the indicated integrals are set integrals as in (11).  

B. Bayes-Optimal Multitarget State Estimation  
As with the single-sensor, single-target Bayes filter of (5-8), 

one must extract estimates of the quantities of interest.  In the 
multitarget case, it is not only the positions, velocities, 
identities, etc. of the targets that are of interest, but also their 
number.  Bayes-optimal multitarget state estimators determine 
target state and target number simultaneously.   

However, there is one difficulty:  the multitarget analogs of 
the EAP and MAP estimators of (9,10) do not exist in general 
([12], pp. 494-497).  Thus new estimators must be devised.  For 
our purposes, it is enough to describe the closest analog of the 
MAP estimator, the joint multitarget (JoM) estimator.  It is 
defined by ([12], pp. 498-500):   
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where  c  > 0  has the same units of measurement as  x.  
Typically,  c  is chosen to be equal to the accuracy to which the 
single-target state  x  is to be estimated ([12], p. 500). 

C. The Multisensor-Multitarget Bayes Filter and SLAM 
Consider the simplest case first:  a single robot, inserted 

into an unknown environment which has no moving targets.  In 
this case SLAM is just a multisensor-multitarget detection and 
tracking problem, in which the coordinate reference frame is 
not absolute—for example, its origin and orientation is 
determined by the robot’s position and orientation.  Using its 
sensors, the robot detects stationary landmarks and then 
localizes them.  The finite set of landmarks defines the map in 
the robot’s reference frame. 

Consequently, the process of recursive map-building is 
identical to the process of propagating the multitarget 
probability distribution, as in (33), together with a Bayes-
optimal multitarget state estimator as with (37).  At time-step  
k,  the multitarget state-estimate  kkX |

ˆ   is the current estimate—
indeed, the Bayes-optimal—estimate of the map.   The degree 
to which the estimated map agrees or differs with the actual 



map can be determined using the optimal sub-pattern 
assignment (OSPA) metric [27].    

Since the multitarget Bayes filter is intractable in general, 
approximations of it such as the PHD filter—see Section VI—
must be employed.  This is the approach to SLAM taken in 
recent publications [1, 21-25].  The PHD  Dk|k(x)   can be 
regarded as the average map at time-step  k.  The individual 
landmarks can be estimated from  Dk|k(x)  as follows.  Integrate  
Dk|k(x)  to get  Nk|k,  the expected number of landmarks.  Round  
Nk|k  off to the nearest integer  ν   and find the  ν   largest 
suprema of   Dk|k(x).  The corresponding states  x1,…,xν   are an 
estimate of the landmarks and their number.                

When the scene contains moving targets as well as 
stationary landmarks, matters are only slightly more complex.  
The moving targets are situated in the relative map specified by 
the robot and the stationary landmarks.  

The greatest degree of complication occurs when there are 
multiple robots.  If they do not communicate with each other, 
then—from the point of view of any individual robot—the 
other robots are nothing more than targets.  On the other hand, 
if complete robot-to-robot communication is feasible and 
allowed, then in principle a single Bayes-optimal map of the 
environment can be constructed.  

VI. APPROXIMATE BAYES MULTITARGET FILTERS  
The multisensor-multitarget Bayes filter of (32-35) is 

computationally intractable for all but the simplest problems.  
In this section I summarize principled approximations of this 
filter:  PHD and CPHD filters in the general sense (VI-A), the 
“classical” PHD and CPHD filters (IV-B), and derivation of 
these filters using multi-object calculus (IV-C).      

A. PHD and CPHD Filters in the General Sense  
Approximate multitarget filters are derived by assuming 

that the distributions  fk|k(X|Z(k))  and  fk+1|k(X|Z(k))  have a 
particular simplified form.  

Assume that they are the distributions of Poisson 
processes—i.e., they have the form 
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where  D(x)  is a PHD in the sense of (22).  Then the 
multitarget Bayes filter can be approximated by a filter   

…→ Dk|k(x|Z(k)) → Dk+1|k(x|Z(k)) → Dk+1|k+1(x|Z(k+1)) →...   (39) 

Even if  fk+1|k(X|Z(k))  is Poisson this does not mean that  
fk+1|k+1(X|Z(k+1))  is Poisson.  So, choose Dk+1|k+1(x|Z(k+1))  to be 
the PHD of  fk+1|k+1(X|Z(k+1))—that is from (21), 
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Similarly,  fk+1|k(X|Z(k))  is not necessarily Poisson if  fk|k(X|Z(k))  
is Poisson.  So choose  Dk+1|k(x|Z(k))  to be the PHD of  
fk+1|k(X|Z(k)).  Any filter (39) arising from this reasoning process 
is called a PHD filter in the general sense.  (For PHD filters 
with general clutter and target-measurement models, see [2]). 

The concept of a CPHD filter further generalizes this 
reasoning.  Assume that  fk|k(X|Z(k))  and  fk+1|k(X|Z(k))   are the 
distributions of independently identically distributed cluster 
(i.i.d.c.) processes—i.e., they have the form 
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where   p(n)  is a probability distribution on the number  n  of 
targets (the “cardinality distribution”) and where   s(x)  is the 
spatial distribution of the targets.  In this case, the multitarget 
Bayes filter can be approximated by a filter of the form   
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Here, the top row is a filter on the spatial distribution and the 
bottom row is a filter on the cardinality distribution, as defined 
in (21).  The vertical arrows at the measurement-update step 
indicate that the two filters are tightly coupled at that transition.    

Even if  fk+1|k(X|Z(k))  is i.i.d.c.,  fk+1|k+1(X|Z(k+1))  is not 
necessarily i.i.d.c.  So, choose sk+1|k+1(x)  to be the normalized 
PHD of  fk+1|k+1(X|Z(k+1))  and choose  pk+1|k+1(n)  to be the 
cardinality distribution of  fk+1|k+1(X|Z(k+1)).  Similarly,  
fk+1|k(X|Z(k))  is not necessarily i.i.d.c. if  fk|k(X|Z(k))  is i.i.d.c.  So 
choose  sk+1|k(x)  to be the normalized PHD of  fk+1|k(X|Z(k))  and  
pk+1|k(n)  to be the cardinality distribution of  fk+1|k(X|Z(k))  .  Any 
filter (41) that results from this line of reasoning is called a 
CPHD filter in the general sense. 

B. The “Classical” PHD  Filter  
The “classical” PHD filter ([6] and Chapter 16 of [12]) is a 

PHD filter with the following simplifying assumptions:  (1) a 
single sensor; (2) all target motions are independent; (3) 
measurements are conditionally independent of the target 
states; (4) the clutter process is Poisson; and (5) target-
generated measurements are Bernoulli.  By the latter is meant a 
measurement process that is governed by the following single-
target likelihood function:  
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where  pD(x)  is the probability of detection and  fk+1(z|x)  is the 
conventional sensor likelihood function.     

C. Derivation of PHD and CPHD Filters Using Multitarget 
Calculus  
The explicit measurement-update equations for PHD and 

CPHD filters ([2,6,8] and Chapter 16 of [12]) are derived using 
the following procedure (similar reasoning is used for the time-
update equations):   

Step 1:  Derive a closed-form formula for the p.g.fl.  
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where    
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                 (45)  

is the p.g.fl. of the multitarget likelihood function  fk+1(Z|X).  
Also, the power notation  gZ  was defined in (19).  The p.g.fl. 
(44) typically ends up having the form (see [12], pp. 651-652)  

Fk+1[g,h] =  κk+1[g] ⋅ Gk+1|k[Th[g]],                   (46)  

where  κk+1[g]   is the p.g.fl. of the clutter process;  Gk+1|k[h]  is 
the predicted-target p.g.fl.; and Th[g] is a functional 
transformation derived from the single-target measurement-
generation model (26).  

Step 2:  Derive formulas for the functional derivatives 
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of   Fk+1[g,h]  with respect to  g,  where  Zk+1  is the current 
measurement-set.  Then the posterior p.g.fl. is ([12], p. 651) 
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and the posterior PHD is then derived from (48) using (22).   

Evaluation of (48) usually requires the product rule for 
functional derivatives (see [12], p. 386) because of the product 
in (46); and a chain rule for functional derivatives because of 
the nested p.g.fl.  Gk+1|k[Th[g]]  in (46).  

VII. CONCLUSIONS 
Finite-Set Statistics (FISST) is the basis for a 

fundamentally new, Bayes-optimal, and theoretically unified 
approach to Simultaneous Localization and Mapping (SLAM) 
and related robotics applications [1,21-25].  In this tutorial 
paper I summarized the elements of FISST and briefly 
described its relevance to Bayes-optimal SLAM (Section V-C). 

Further information about FISST can be found in the 
tutorial [13], the book [12], the book chapter [11], and in the 
following papers describing specific topics:  multisensor PHD 
and CPHD filters [2,3,5], CPHD filters for superpositional 
sensors [4,15], jump-Markov CPHD filters [7], PHD filters for 
extended and unresolved targets [9,10], sensor and platform 
management [14], CPHD filters for unknown clutter and 
detection backgrounds [16,17,20], PHD filters for joint sensor-
bias estimation and multitarget tracking [19], and multitarget 
filters for nontraditional information [12, Chapters 3-6], [18].     
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