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Abstract— This paper proposes an algorithm to drive a robot
equipped with a noisy, visual sensor to localize an unknown
number of objects in an environment. The control strategy is
based upon the analytic gradient of mutual information between
the sensor readings and the object locations. An adaptive
cellular decomposition is used to represent the environment,
increasing resolution only in regions likely to contain an object.
The unknown number and locations of both objects and sensor
readings are modeled using random finite sets and a recursive
Bayesian filter maintains the robot’s belief over the distribution
of object locations. Utilizing the fact that a visual sensor can
only see a finite subset of the whole environment, the complexity
of the Bayesian filter update and mutual information gradient
computations are significantly reduced. Numerical simulations
and experimental results are used to illustrate the performance
of the filter and controller.

I. INTRODUCTION

Due to decreasing cost and increasing capabilities, visual
sensors such as cameras and the Microsoft Kinect have many
possible applications in robotics, including the detection and
localization of objects in an environment using cameras
mounted to an autonomous mobile robot platform. Scenarios
where such technology would be useful include search and
rescue as well as inspection of buildings or vehicles, where
the number of objects of interest (eg. trapped victims, or
damaged areas) is in general unknown a priori. The two
questions are then how to estimate both the number of objects
and their locations, and subsequently how to use the robot’s
belief about object locations to drive the robot to quickly
explore the environment.

Our approach to the task of estimation makes use of
random finite sets, as these provide a rigorous probabilistic
framework for problems where the dimension of the state
space, i.e. number of objects and detections, is unknown
and possibly time-varying. The underlying environment is
adaptively discretized into a collection of cells, giving finer
resolution to regions where there is high probability of an
object and coarsening the resolution in regions that are
likely to be empty. This has the advantage of decreasing
computational load while still allowing for arbitrarily fine
precision in localization. Our algorithm then uses a recursive
Bayesian filter over this discrete space to update the robot’s
belief about object locations using the sensor readings.
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Fig. 1. Photograph of the robot platform used in this work.

Additionally the number of object detections is time vary-
ing, both because the robot’s motion causes the number of
objects in the field of view of the sensor (the sensor footprint)
to change and due to noisy measurements, i.e. false positive
detections and false negatives. To take this uncertainty into
account the sensor model is also based on random finite sets.
Furthermore, leveraging the fact that the sensor footprint only
covers a finite subset of the environment, we are able to
reduce the computational complexity of the algorithm.

Using the resulting estimate of object locations, the control
algorithm moves the robot to maximize the immediate infor-
mation gain, a strategy sometimes known as “information
surfing” [3]. More precisely, the controller computes the
gradient of mutual information between the sensor readings
and object positions using an approximation to the sensor
model. The robot then moves such that the sensor footprint
follows this gradient direction.

In our previous work, we introduced the analytic gradient
of mutual information and used this to localize objects in a
hazardous environment using a team of robots with simple
binary sensors, which return a positive value if an object is
detected anywhere within the sensor footprint [16]. Then in
[4] we reformulated the problem using finite set statistics and
developed a decentralized implementation of the previous
algorithm based on an approximation to mutual information.
This paper builds on our previous work in two ways. Firstly
we consider more complex sensor models for estimation,
providing position information of objects, allowing for di-
rectional sensing, and the possibility of multiple detections.
Secondly we use an approximation to the sensor model in
the controller, which decreases the computational complexity
while still leading to reliable localization of objects and
exploration of the environment.



A. Related Work

The use of Bayesian filtering to estimate unknown and un-
certain environments is well established, with many current
methods summarized in [18] by Thrun, Burgard, and Fox.
In particular, the problem of multi-target tracking has been
addressed in several contexts, including SLAM, computer
vision, and radar-based tracking, using a variety of methods.
To handle an unknown number of targets in many traditional
SLAM implementations, a random vector of a specified size
is initialized and the size of this vector is increased when
there is sufficiently high confidence that a new object has
been detected, as described in [18]. This approach is further
complicated by unknown data associations, i.e. correspon-
dence between a sensor measurement and a specific target,
with many approaches only keeping the maximum likelihood
correspondence or maintaining multiple filters for different
correspondence hypotheses.

The development of finite set statistics in [9] by Mahler
more naturally describes such problems, including removing
the need to explicitly consider data associations. This has
been used to effectively track an unknown number of moving
targets using stationary sensors in works such as [20] by
B.N. Vo, Singh, and Doucet and [19] by B.N. Vo and Ma.
Recently the use of random finite sets has been adopted in
mobile robotics, being used for feature-based mapping by
Mullane, et al. in [13], [12]. Lundquist, et al. use this to
create an obstacle map for a vehicle in [8]. All of these
applications use the Probability Hypothesis Density filter
introduced by Mahler in [10], which tracks the first moment
of the distribution over random finite sets of target locations.

Mutual information as a control objective for active es-
timation has appeared in several works. Grocholsky in [5]
and Bourgault, et al. in [1] use mutual information for target
tracking and exploration tasks, but do not use an analytic
computation of the gradient. Hoffmann and Tomlin in [6] use
mutual information to localize a known number of targets,
using particles filters to represent object locations and an
iterative method to locally maximize mutual information
around the sensor position. In [7] Julian, et al. use the
identical gradient of mutual information as our work to
drive multiple robots for state estimation tasks. All of these
previous works only consider a known number of targets.
Ristic et al. consider the problem of localizing an unknown
number of targets using the expected Rényi divergence, a
generalization of mutual information, to select between a
discrete set of actions in [14], [15].

B. Platform Description

The platform considered in this work, shown in Fig. 1,
is a differential drive robot built on a Segway platform. It
is equipped with a single front-facing camera which detects
objects using shape and color matching. There are a pair of
stereo cameras, a vertical-scanning LIDAR, and an IMU used
for odometry and a horizontal scanning LIDAR for obstacle
detection. Onboard processing is done using two Mac Mini
computers with 2.0 GHz Intel core i7 processors and 4 GB
of RAM mounted to the robot chassis.

The organization of the remainder of the paper is as fol-
lows. In Sect. II we formulate the problem, with the Bayesian
filter given in Sect. III and the mutual information gradient
controller in Sect. IV. The adaptive cellular decomposition
of the environment is discussed in Sect. V. Results from
simulations and experiments are given in Sect. VI and Sect.
VII contains our concluding remarks.

II. PROBLEM FORMULATION
Let the robot move in a bounded, planar environment

Q ⊂ R2, where the vector xt = [x, y, ψ]T is the pose of the
robot at time t. While the robot moves about in continuous
space, the environment is discretized into a finite collection
of cells {Qj}mj=1. Then a random finite set (RFS), S ∈ S,
describing object locations will be a set of labels of occupied
cells, where S is the set of all possible RFSs for a given
discretization and choice of maximum number of objects.

The robot is equipped with a camera which sees a finite
subset of the environment in front of the robot, which we
call the footprint of the sensor. Mathematically, the footprint
is the set of cell labels that are at least partially visible by the
robot and is denoted F . Thus, since the robot is only able
to disambiguate environment hypotheses (i.e. RFSs) based
upon what is currently visible, we define the projection r :
S → V to be r(S) = S ∩ F , where V is the set of RFSs
within the footprint of the robot. Note that in general multiple
S will map to the same V , thus the map is surjective but
not injective. This means that we may only define the right
inverse r−1(V ) = {S | r(S) = V }, so r(r−1(V )) = V but
r−1(r(S)) 6= S in general.

To take the finite footprint into account in the sensor
model, the measurements are assumed to be conditionally
independent of objects outside the footprint given the objects
within the footprint, so that

P(Y | S) = P(Y | r(S)) = P(Y | V ), (1)

where Y ∈ Y is the RFS of observations. Furthermore we
assume that detections {y1, . . . , yn} ∈ Y are conditionally
independent of one another given the environment and that
the number of detections is given by a Poisson distribution,
so that Y is a Poisson RFS and the measurement model is

P(Y | V ) = e−λ
∏
y∈Y

DV (y), (2)

where DV (y) is the intensity function and λ =
∫
F
DV (y) dy

is the expected number of detections, both of which depend
on the environment V . As the location of the object in-
side each cell is unknown, the simplest approach is to let
DV (y) be a piecewise constant function, with DV (y) =
(1 − Pfn)Uj(y) in cells that are occupied, DV (y) = (1 −
Pfn,n)Uj(y) in cells sufficiently close to occupied cells, and
DV (y) = PfpUj(y) in cells that are empty. Here Pfn is
the probability of a false negative (Pfn,n > Pfn), Pfp is
the probability of a false positive, and Uj(y) is the uniform
distribution over cell Qj . The choice of Pfn,n will depend
upon the consistency of the sensor, with Pfn,n ≈ Pfn when
the noise in the measured position of a object is on the same
length scale as the underlying grid.



III. BAYESIAN ESTIMATION

As the robot moves about the environment and collects
measurements, a Bayesian filter keeps track of the current
belief about the state of the environment. Let ϕt(S) = P(S |
Y 1:t) be the estimated distribution over RFSs at time t given
all observations up to time t. Then the general form of the
Bayesian update is

ϕt(S) =
P(Y t | S)ϕt−1(S)∑
S P(Y t | S)ϕt−1(S)

. (3)

However this can be made more computationally efficient
using the fact that sensors have a finite footprint.

Theorem 1: The Bayesian update over the full environ-
ment can be computed from the Bayesian update over the
neighborhood V as

ϕt(S) =
ϕt(V )

ϕt−1(V )
ϕt−1(S).

Proof: See Theorem 1 in [4].

In other words, the updated belief for a RFS S is propor-
tional to the prior belief and the updated belief over the foot-
print of the robot. While this operation still requires updating
all RFSs over the full environment, it saves on computations
as it does not require computing the measurement likelihood
for each possible environment.

IV. MUTUAL INFORMATION GRADIENT
CONTROLLER

The mutual information between two random variables is
defined by Shannon in [17] to be

I(S;Y) =

∫
S

∫
Y

P(S, Y ) log
P(S, Y )

P(S)P(Y )
dY dS. (4)

While it is possible to integrate over all possible measure-
ment and object location RFSs, we use an approximation to
reduce the complexity of these computations, similar to the
motivation for the development of the PHD filter in [10]. To
this end we define a new, coarse sensor model that returns a
single binary reading, so the integration over Y is reduced
to a sum over two terms. This coarse model can be thought
of as the probability of returning a “good” measurement,
so maximizing this should lead to faster localization of the
targets. The intuition behind this is similar to the posterior ex-
pected number of targets (PENT) control objective proposed
by Mahler and Zajic in [11], which seeks to maximize the
number of targets in the footprint of the sensor.

Based on experimental results of the error in the estimated
position, shown in Fig. 2(a), this binary model is

P(y = 1 | s) = (1− Pfn) exp

(
− (r(x)−R0)

2

σ2
r

− θ(x)2

σ2
θ

)
(5)

r(x) =
√

(xs − x)2 + (ys − y)2 (6)

θ(x) = tan−1
(
ys − y
xs − x

)
− ψ (7)
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Fig. 2. (a) Experimental results showing the true and estimated object
positions as measured in the body frame of the robot. The angular bias
appears to be independent of the true position while the distance error
is smallest for the objects placed at x = 8m. Performance significantly
degrades at the x = 15m line. (b) An example binary measurement
model, where darker shading indicates the highest probability of a “good”
measurement.

which is a truncated Gaussian in polar coordinates centered
at (r, θ) = (R0, 0). Here (xs, ys) is the centroid of cell
s ∈ S, σ2

r , σ
2
θ are the covariances in the radial and angular

directions, and x is the pose of the robot. A contour plot of
this function is shown in Fig. 2(b).

Given the binary detection model, we now derive a new
expression for P(y | S). As the only way to get no detection
is to not see each of the objects in the footprint and not have
a false positive, we can write the conditional probability

P(y = 0 | S) = (1− Pfp)
∏
s∈S

P (y = 0 | s), (8)

where P (y = 0 | s) is the additive complement of (5).
Similarly the probability of a detection is the additive com-
plement, P(y = 1 | S) = 1− P(y = 0 | S).

Our proposed controller follows the analytic gradient of
mutual information with respect to the position of the peak
of (5). This gradient is given in the following theorem, where
the subscript x indicates that the quantity depends upon the
pose of the robot.

Theorem 2: Let random vector Y and random finite set
S be jointly distributed with distribution Px(S,Y) that is
differentiable with respect to the parameter vector z. Also,
suppose that the support S× Y of Px(S,Y) does not depend



on z. Then the gradient of mutual information with respect
to the parameters z is

∂Ix(S;Y)

∂z
=

∫
Y

∫
S

∂Px(S, Y )

∂z
log

Px(S, Y )

P(S)Px(Y )
δS dY. (9)

Proof: See Theorem 2 in [16].

Utilizing the fact that the sensor footprint is finite we are
able to significantly reduce the complexity of the gradient
computations. This follows from application of the condi-
tional independence assumption stated in (1) and the fact
that the mutual information between independent random
variables is identically zero, so that I(S;Y) = I(V;Y). The
gradient computation can be simplified analogously.

Writing (9) in terms of known quantities, we have

∂Ix(V;Y)

∂xp
=

∑
y∈{0,1}

∑
V ∈V

∂Px(y | V )

∂xp
ϕt(V )

× log
Px(y | V )∑

V ∈V Px(y | V )ϕt(V )
, (10)

where xp = [xp, yp]
T = [x+R0 cosψ, y+R0 sinψ]

T is the
position of the peak of (5). Here ϕt(V ) comes from (3) and
Px(y | V ) comes from (8), the gradient of which is

∂P(y = 0 | V )

∂xp
= −P(y = 0 | V )

×
∑
v∈V

∂P(y=1|V )
∂r

∂r
∂xp

+ ∂P(y=1|V )
∂θ

∂θ
∂xp

1− P(y = 1 | V )
, (11)

and the gradient of P(y = 1 | V ) is the negative of this.
Using these results, our proposed controller moves the

sensor field of view according to

xt+1
p = xtp + k

∂I(V;Y)
∂xp∥∥∂I(V;Y)

∂xp

∥∥+ ε
, (12)

where k is the maximum step size and ε� 1 avoids singular-
ities near critical points. Note that (5) is not differentiable on
the boundary of the footprint, as the probability of detection
instantaneously drops to zero outside of the footprint. Sub-
gradient methods can be used, defining the gradient to be
identically zero on the boundary of the footprint, so the
optimization will perform analogously to the gradient ascent
for differentiable functions.

In the event that the estimate has nearly converged within
the footprint of the sensor, the mutual information and its
gradient will be near zero so the local, greedy controller may
get stuck. Longer time-horizon path planning would be the
best way to prevent this, however even with the reductions
in complexity, mutual information is prohibitively expensive
for such searches. Instead, when mutual information is below
some threshold, τI � 1, the robot drives toward the cell
with the highest entropy in the probability of occupancy,
i.e. with probability nearest 0.5. The intuition here being
that, because maximizing mutual information is equivalent to
maximizing the expected reduction in entropy due to a sensor
reading, driving toward the cell with highest uncertainty

will still lead to the desired behavior. Note that this choice
ignores uncertainty in sensing and only considers marginal
distributions of ϕt over individual cells, so while it is
sufficient to perturb the robot away from local extrema in
the greedy controller, it will not perform as well for local
searches.

The only remaining question is how to move the robot
itself in order to place the field of view at the desired
location. The simplest method, used here, is to turn the robot
to face xt+1

p and then drive forward/backward as necessary.
We are currently testing other methods to determine their
impact on the performance of the algorithm.

V. ADAPTIVE CELLULAR DECOMPOSITION

Looking at (10), the number of computations needed to
compute the mutual information gradient is O(|V|). While
this is a linear dependence upon the number of RFSs in the
footprint of the robot, this number depends upon the number
of cells in the footprint, |F |, and the maximum number of
objects, Nmax, according to

|V| =
Nmax∑
n=0

(
|F |
n

)
. (13)

So |V| is O(2|F |) when Nmax ≈ |F | and O(|F |Nmax) when
Nmax � |F |.

To keep the number of cells to a tractable level, we must
either consider a small number of objects or employ an
adaptive cellular decomposition of the environment. One
such method used in grid-based mapping and localization
problems is the quadtree structure, such as in the work
of Chung, et al. in [2]. The idea here is that an initial
representation of the environment is very coarse, and only
refined in areas that are likely to contain an object. Fur-
thermore we allow the refinement to be reversed, in case
areas are incorrectly refined due to false positive detections.
The two basic operations to this procedure are the addition
and subtraction of a cell from the environment, given in
Alg. 1 and Alg. 2, respectively. In the case of a quadtree,
a refinement consists of the removal of the occupied cell
followed by the addition of four new cells and takes place if
the probability that a cell is occupied surpasses a specified
threshold τo. Similarly a merging process occurs when the
probability that a cell is empty drop below another threshold
τe < τo, and consists of the removal of four empty cells
followed by the addition of a single new cell. Examples of
these processes are shown in Fig. 3.

Algorithm 1: Add Cell
1: S′ ← S

2: for S ∈ S | |S| < max number of objects do
3: ϕ′(S)← 1

2ϕ(S)
4: ϕ′(S ∪ {ms + 1})← 1

2ϕ(S)
5: S′ ← S′ ∪ {S ∪ {ms + 1}}
6: end for
7: m′s ← ms + 1



(a) Cell refinement (b) Cell merge

Fig. 3. A simple 2 × 2 grid example where the shading indicates the
probability that a cell is occupied with white being 0 and black being 1.
A cell refinement procedure is shown in (a), where a large occupied cell
is divided into four smaller cells with lesser occupancy probability. A grid
merging procedure is shown in (b), where four empty sub-cells with the
same parent cell are merged to form the parent cell.

Algorithm 2: Remove Cell
1: for V ∈ Vj{ do
2: ϕ(V )←

∑
S|rj(S)=V ϕ(S)

3: S′ ← S′ \ {V ∪ {j}}
4: end for
5: ms ← ms − 1

VI. TEST RESULTS
To test the performance of our proposed algorithm we

conduct a series of simulations in Matlab and field tests
on the robot. In general visual sensors can be very noisy,
returning many false positives due to other objects in the
environment (eg. if using shape detection to locate a ball, the
wheel of a car is a potential false positive) and many false
negatives (eg. variable lighting conditions and occlusions).
To take this into account we set the probability of a false
positive to be Pfp = 0.1 and the probabilities of a false neg-
ative to be Pfn = 0.1 and Pfn,n = 0.5 based on empirically
observed performance. In the binary sensor model (5) we set
R0 = 7m, σr = 3m and σθ = 0.7rad, and for the control
law k = 0.25m, ε = 10−20, and τI = 10−5. The sensor has
a 10m range and a 40◦ field of view.

Simulation Results: The open-field environment, shown
in Fig. 4(a) along with a typical path and final location, is
used for simulations. As can be seen the robot tends to sweep
through the environment, exploring new regions with every
loop. Once an object appears within the field of view of the
sensor and the robot receives many consecutive detections in
the same area, the robot stays in that area and will continue to
observe the object until the probability that it is in a particular
cell is near 1. In other words, the robot will perform a depth-
first search of the quadtree until it determines the leaf of
minimum size (chosen to be 1m here) containing the object.

Fig. 4(b) shows the final estimate of object locations for
the path in Fig. 4(a), with darker shading indicating a higher
probability of occupancy in a cell. The two dark cells, which
are the true cells containing the objects, have a probability
of occupancy near 1 (differing by ∼ 10−9) and all other
cells are empty with probability of occupancy ≤ 0.0068. We
assume a maximum of three objects in the environment.

Fig. 4(c) shows the time evolution of the entropy of
the distribution over object position over 20 trials of the
simulation. Overall there is a decreasing trend, with small
local increases due to noisy measurements, i.e. false positive
and false negative detections. The brief sections with large
fluctuations occur when an object is in the field of view of
the sensor: there is a steep drop in entropy as the probability

of occupancy increases followed by instantaneous increases
as the grid is refined, repeating until the estimate converges.
In each trial the filter correctly found the objects.
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Fig. 4. Sample results from simulated data. (a) A typical path taken
by the robot, starting from the origin, is indicated by the solid line and
the final position of the sensor footprint is given by the dashed line. True
object locations are given by the red diamonds. (b) The final object position
estimates for the path shown in (a). The shading in each cell is proportional
to the probability of occupancy, with white being 0 and black being 1. (c)
Time history of the entropy of the distribution of object locations over 20
representative runs.

Experimental Results: The second environment, shown
in Fig. 5(a), is used for field tests with the robot and is
the simplest example of a non-trivial topology in the prior
belief. In this scenario the robot begins at the center of the
environment, with a single object located in the surrounding
annular region show by the shaded cells, which have non-
zero probability of occupancy in the prior.

We performed 12 trials with random initial position of
the object with the resulting time history of the entropies in
Fig. 5(b). In 10 runs the robot correctly located the object
within the 1m precision of the grid. The sudden drop in
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Fig. 5. Sample results from experimental data. (a) A typical path taken
by the robot, starting from the center of the annulus, is indicated by the
solid line and the final position of the robot and its sensor footprint are
given by the dashed line. The true object location is given by the red
diamond. Shaded cells correspond to non-zero prior probability of the cell
containing an object. (b) Time history of the entropy of the distribution of
object locations over ten representative runs.

entropy is due to the fact that the number of objects is known,
causing the distribution to rapidly converge when multiple
detections are made in the same cell. The variation in time
to convergence is due to the random placement of the object,
with short times corresponding to the object being placed
nearer the initial footprint of the robot. The robot failed to
localize the object after a full sweep of the environment in
two runs due to failures in the perception system. Uneven
terrain can cause large jumps in the measured location of
the target as we do not yet take the tilt of the robot into
account when sensing, causing the filter to lose track of the
object. The system was able to recover in once such instance
(blue line in Fig. 5(b)), nearly converging to the incorrect cell
before being switching to the correct cell, causing the large
spike in entropy near the end of the trial.

VII. CONCLUSIONS

In this paper we proposed a method to drive a robot
equipped with a visual sensor to localize an unknown number
of objects in an environment by following the gradient
of mutual information between the objection locations and
the probability of detection. The number and locations of
objects is modeled using random finite sets over an adaptive
discretization of the environment, allowing for arbitrarily fine

resolution while reducing the computational complexity. A
recursive Bayesian filter maintains the robot’s belief of object
locations. The complexity is further reduced by noting that
real sensors have a limited field of view in the environment,
thus sensor measurements will be conditionally independent
of objects that are not visible. Finally, simulated and ex-
perimental results illustrate the performance of our proposed
algorithm, reliably finding the true object locations. It should
also be possible to include multiple robots by combining the
techniques from this work and [4].
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