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Abstract—This paper presents an overview of the extended
target tracking research undertaken at the division of Automatic
Control at Linköping University. The PHD and CPHD filters for
multiple extended target tracking under clutter and unknown
association are summarized, with focus on the Gaussian mixture
and Gaussian inverse Wishart implementations. The paper elab-
orates on measurement set partitioning, the measurement gen-
erating Poisson rates, the probability of detection, and practical
examples of measurement models.
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I. INTRODUCTION

In target tracking it is often assumed that a single target
will give rise to at most one measurement per time step, see
e.g. [1]–[3]. In many modern applications, the sensor and
target setup is such that this assumption no longer holds.
When a target occupies multiple sensor resolution cells, it can
potentially give rise to more than one measurement per time
step. Such a target is called extended target.

A typical situation where the sensor can give multiple
detections for a single target occurs in urban traffic. Consider
Figure 1, where a car, a cyclist and a pedestrian were detected
by a laser range scanner. The car is L-shaped because only
two sides are visible to the sensor, the cyclist looks like a stick
with a dot in the middle and the two legs of the pedestrian are
visible as paired dots. These are good examples of extended
targets, because they have each caused multiple detections.

In the traffic situation in Figure 1, several targets are present,
and the number of targets varies as the targets move relative
to the sensor, and it is a priori unknown which target caused
which measurement. This is an example of a typical multi
target tracking problem, and there exists several frameworks
in the literature to handle multiple targets under uncertain
association and clutter. One approach is to model the targets
as a random finite set (RFS), and try to estimate this set,
i.e., both estimating the elements of the set and the number
of elements in the set. Mahler [4], [5] has introduced an
approach, called finite set statistics (FISST), which allows the
problem of estimating multiple targets in clutter with uncertain
associations to be cast in a Bayesian filtering framework. An
important contribution of FISST is to provide structured tools
for Bayesian estimation, in the form of the statistical moments
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Fig. 1. Example of laser range data, featuring detections obtained from a
car, a cyclist and a pedestrian.

of a RFS. The first order moment of a RFS is called probability
hypothesis density (PHD), and is an intensity function defined
over the state space of the targets. In all but the simplest
of cases, the full multi-target Bayesian filter is infeasible to
implement. As an approximation, the so called PHD filter
propagates in time PHDs corresponding to the set of target
states.

The standard PHD filter was developed to track targets which
produces at most one measurement per time step. The topic of
this paper is tracking of extended targets, such as those shown
in Figure 1. Mahler [6] has presented an extension of the PHD
filter to also handle extended targets, and the main purpose
of this paper is to elaborate on different aspects of practical
implementations of the extended target PHD filter.

The paper is organized as follows. In Section II we present
the extended target PHD filter, and relate selected parts of
its implementations to the scenario depicted in Figure 1. In
Section III we give the extended target CPHD filter, and show
that the CPHD filter has a more stable cardinality estimate than
the PHD filter in situations where the probability of detection
is (much) less than unity. The paper is ended with concluding
remarks in Section IV.

II. THE EXTENDED TARGET PHD FILTER

In a Bayesian framework, the posterior is given by the
product of the likelihood and the prediction. Let

Dk|k−1 (x|Z) = D
(
xk|Zk−1

)
(1)



be the predicted PHD, where xk is the multiple extended target
state at time tk, and Zk−1 is the set of measurements up to,
and including, time tk−1. The posterior, or corrected, PHD
Dk|k (x|Z), is given by

Dk|k (x|Z) = LZk
(x)Dk|k−1 (x|Z) , (2)

where LZk
is the likelihood function. The likelihood func-

tion models the relation between the target states and the
measurements. Further, it also models target states which
might not give rise to measurements at all, as well as clutter
measurements, which are measurements not generated by the
targets.

In the specific case of extended targets, the likelihood
function LZk

must also model the relationship between a
single target state and the number of measurements that a
single target might cause. Gilholm et al [7] presented a model
for extended targets in which the number of measurements
generated by an extended target is a random draw from a
Poisson distribution. The so called PHD pseudo-likelihood
function for the extended target Poisson model of [7] was
derived in [6], and is defined as

LZk
(x) ,

Not detected targets︷ ︸︸ ︷
1−

(
1− e−γ(x)

)
pD (x)+

e−γ(x)pD (x)
∑
p∠Zk

ωp

∑
W∈p

γ (x)
|W |

dW
·
∏

zk∈W

p(zk|x)
λkck (zk)︸ ︷︷ ︸

Detected targets

, (3)

where the first part models the non-detected targets, and
the second part models the detected targets and the clutter
measurements.

The notation p∠Zk means that p is a partition of the
measurement set Zk, i.e. a division of the measurements z
into non-empty cells W . The first summation in (3) is taken
over all possible partitions p of the measurement set Zk, and
the second summation is taken over all cells W in the current
partition p. The product in (3) is taken over all measurements
zk in one cell W . Further, the quantities ωp and dW are non-
negative coefficients defined for each partition p and cell W
respectively.

To obtain a computationally tractable extended target PHD
filter, a few assumptions and approximations are necessary.
The full details are given in [8]–[10]. In what follows, selected
parts of the extended target PHD filter are elaborated on,
namely:
• approximations of the full set of partitions, see Sec-

tion II-A,
• the measurement rate γ (x) that governs the Poisson

rate with which target measurements are generated, see
Section II-B,

• the probability of detection pD(x), see Section II-C,
• approximations of the PHD intensity using distribution

mixtures, and the corresponding target measurement like-
lihood models p(zk|x), see Section II-D.

The clutter is modeled as Poisson distributed in number,
with rate λk, and spatial distribution ck (zk). We will not
elaborate further on clutter in this paper.

A. Partitioning the Measurement Set

The number of ways that a set Z containing n measurements
can be partitioned is given by the n:th Bell number [11],
denoted Bn. The Bell numbers Bn increase very fast when
n increases, e.g. B3 = 5, B5 = 52 and B10 = 115975. In
[6] Mahler points out that a tractable implementation of the
extended target PHD filter requires approximations of the full
set of partitions. The coefficients ωp in (3) can be interpreted as
weights for the individual partitions p, where a higher weight
corresponds to a more likely partition. Any approximation
of the full set of partitions should contain the most likely
partitions.

Many sensors will produce sets of measurements where the
subsets of measurements that stem from the same target are
close with respect to some distance or measure. For radar
and laser range sensors, the measurements will be close in
terms of similar range and bearing. For imaging sensors, the
measurements will be close e.g. in terms of pixel positions.
Thus, in many scenarios a likely partition is one that places
close measurements in the same cell, while keeping distant
measurements in different cells.

Consider the measurements in Figure 1. From visual inspec-
tion of the measurements, one probable partition is given by
the three cells in Figure 2a. This partition has clustered the
measurements according to the belief that a person, a bicycle
and a car were measured. An alternative partition, with four
cells, is given in Figure 2b. Here one of the cells has been split
in half, because what was believed to be measurements of a
bicycle, could be measurements of two persons standing next
to each other. Note that both partitions place measurements
that are close in the same cell, yielding intuitive results.

The partitioning idea outlined above is used successfully
in [8]–[10] to keep the number of partitions at a tractable
level. For a set of thresholds, partitions are formed such that
if the distance between two measurements is smaller than
the threshold, they belong to the same cell, and otherwise
to different cells. This partitioning algorithm, called Distance
Partitioning [9], will always give a unique partition for a
given threshold and a given set of measurements. The set of
thresholds can be chosen in different ways, in [8]–[10] the
Mahalanobis distance between two measurements is used to
derive an upper and a lower limit for the thresholds used in
Distance Partitioning.

A comparison between Distance Partitioning and K-
means++, a well known clustering algorithm, shows that
Distance Partition clearly outperforms K-means++, and that
K-means++ only can match the performance of Distance
Partitioning in scenarios with very low clutter rates [9].
Examples on how Distance Partitioning can be complemented
with further partitioning methods are given in [9], [10].

When the full set of partitions is approximated with a
subset, as outlined above, the tracking framework might seem
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(a) Partition with three cells.
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(b) Partition with four cells.

Fig. 2. Two possible partitions for the measurements in Figure 1, with three
and four cells respectively. Note that there are many more possible partitions.

to be fragile to how the subset of partitions is computed.
However, empirically we have found that this fragility only
shows when too few partitions are included in the subset.
When the subset of all partitions contains enough partitions,
there is no performance degradation. Note also that in the
implementations (see further in Section II-D), there is no
explicit association between the PHD components and the
partition cells – each PHD component is updated with each
cell of each partition.

B. Measurement rate

The Poisson rate γ (x) determines (the expected value of)
how many measurements a target will produce in each time
step. In [8]–[10] it is approximated as a non-negative function
of the target state estimates, γ (x) ≈ γ (x̂) where x̂ is an
estimate of x.

When multiple targets are spatially close, they will give rise
to close measurements, which are then typically partitioned
into the same cells using Distance Partitioning. If the true value
of γ( · ) is known, this situation can be solved using additional
partitioning methods, see [9], [10]. The sensitivity of the
corresponding filter parameter, denoted γ̂( · ), is analyzed in
[9]. Under the assumption that γ is constant over time and
equal for all targets, a simulation study has shown that when
the true parameter is within one standard deviation of the filter
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Fig. 3. Three targets with true rates γ(1)k = 5, γ(2)k = 15 and γ(3)k = 30,
show as dark gray lines. The estimates γ̂(i)

k|k , shown as black dots, remain
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k , i.e. the true mean ± one standard deviation,

shown as light gray areas. Plot from [13].

parameter, the filter produces a correct cardinality estimate [9].
Note that when the extended targets are not close, the filter
will give correct cardinality estimate even when γ is outside
this range [9].

However, in the general case γ( · ) is neither constant over
time nor equal for all targets, and setting the corresponding
filter parameter γ̂( · ) is difficult. In some cases, the function
γ( · ) can be modeled using basic properties of the sensor
that is used, see e.g. [12] for a practical example involving
laser range sensors. Alternatively, the Poisson rates can be
estimated from the sequence of measurement sets. A Bayesian
framework for estimation of multiple Poisson rates for targets
of different size and at different distance from the sensor is
presented in [13]. The conjugate prior for the Poisson rate
is the Gamma distribution [14], and exponential forgetting is
used for prediction. An example where the measurement rates
of three targets are estimated is given in Figure 3.

It should be noted that the actual sensor measurements
does not have to be Poisson distributed in number, this is
just a model. Indeed, the extended target PHD filter has
been applied successfully to laser range data, which is not
Poisson distributed in number, see [9], [10], [12]. What is
important is that there is a model by which an estimate of
γ can be obtained, using information from the previous sets
of measurements, and possibly also a model of the sensor.
In Figure 1, this corresponds to predicting the number of
measurements that the car, bicyclist and pedestrian will cause,
respectively.

C. Probability of detection

Similarly to γ, in [9], [10] the probability of detection
pD (x) is approximated as a function of the target estimates,
pD (x) ≈ pD (x̂). In some scenarios it is sufficient to assume
that the probability of detection is constant in the surveillance
volume. For the laser range sensor this assumption does not
hold, because any target located behind another target is
occluded from sensor view, and will not give any sensor detec-
tions. In this case, the probability of detection can be modeled
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Fig. 4. Variable probability of detection. Behind the two extended target
estimates (green ellipses) the probability of detection is lower. Plot created
using the method from [10].

as a non-homogeneous function of the target estimates [9],
[10], see Figure 4 for an example using the method presented
in [10]. With a non-constant pD the tracking filter can handle
target occlusion, i.e. the filter can track targets as they move
through areas in which they do not give any detections [9],
[10].

In a general scenario, the probability of detection would
also depend on factors such as the reflectivity of the object,
its cross section, etc. In case such quantities are included into
the state vector, and those states are observable, they can be
included in the probability of detection calculations. Further
information on probability of detection is given in, e.g., [1]–
[3].

D. Different extended target representations

There are different ways to model the measurement distribu-
tion of multiple extended targets under association uncertainty
and clutter. In this section two alternatives are highlighted,
the commonly used Gaussian model, and the Gaussian inverse
Wishart model first applied to target tracking by Koch [15],
see also [16]. Some measurement models that can be used
with each extended target model are also highlighted.

1) Gaussian Mixture PHD: In [8], [9], [12], the extended
target PHD intensity is approximated as a Gaussian mixture,

Dk|k (x|Z) =
Jk|k∑
i=1

w
(i)
k|kN

(
xk ; m

(i)
k|k, P

(i)
k|k

)
. (4)

Here the state vector xk contains all parameters, from position
and velocity to the parameters governing the size and shape
of the extended targets. Using Gaussian mixtures to model
the target distribution is a common choice in target tracking
literature.

A possible measurement model is

p (zk|xk) = N (zk ; hk (xk) , Rk) . (5)

For the setup in Figure 1, the humans can be represented by
state vectors that contain the position and velocity,

x =
[
x y vx vy

]T
, (6)

and the measurement model can be modelled as a linear
function h(x) = Hx, where H = [Id, 0d]

T and d = 2
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(b) Elliptical target

Fig. 5. Relationship between target states (7) and target shape. Plots from
[12].
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Fig. 6. Rectangular target, target state vector x is given in (7). This type of
extended target model is used in [12].

is the dimension of the measurements. This is performed
successfully in [9].

The car in Figure 1 can be represented by a rectangle with
state vector

x =
[
x y vx vy φ s1 s2

]T
, (7)

see Figure 5a for an explanation of the individual states.
Figure 6 shows this extended target model applied to the L-
shaped cluster of measurements in Figure 1. As an alternative
to tracking the pedestrian’s center of mass, a pedestrian
can be represented as an ellipse, with state vector (7), see
Figure 5b for an explanation of the individual states. Tracking
of elliptical and rectangular extended targets, parametrised as
in (7) and using laser range data, is performed in [12].

Non-linear measurement models have also been used to
estimate polynomial structures in radar data [17], and to
estimate general shapes in laser range data [18]. The bin-
occupancy filter [19], which aims at estimating the probability
of a target being in a given point, and whose continuous form
is the same as the PHD filter, has been used to estimate an
intensity based map of large and general shaped extended
targets in [20].

2) Gaussian inverse Wishart PHD: In [10], the extended
target PHD intensity is modeled as a Gaussian inverse Wishart
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Fig. 7. Extended targets modelled with random matrices, showing data from
a pedestrian (top) and a bicycle (bottom). The kinematical state is xk , the
extension state is Xk . This type of extended target model is used in [10].

(GIW) mixture,

Dk|k (ξ|Z) =
Jk|k∑
i=1

w
(i)
k|kN

(
xk ; m

(i)
k|k, P

(i)
k|k

)
× IW

(
Xk ; v

(i)
k|k, V

(i)
k|k

)
. (8)

Here the extended target state ξk decomposes into a kinemat-
ical state xk, containing position, velocity and acceleration,
and an extension state Xk, governing the shape and size. Thus,
ξk in (8) is analogous to xk in (4). The extension state Xk

is a positive definite symmetric random matrix, hence using
Gaussian inverse Wishart (GIW) distributions to model the
extended targets is also called the random matrix framework.
In this framework, the extended targets are shaped as ellipses.

In the random matrix framework, a possible measurement
model is

p (zk|ξk) = N (zk ; hk (xk) , Xk) , (9)

i.e. the extension state Xk is the measurement covariance. The
corresponding likelihood function is presented in [10]. For
the kinematical state xk the measurement update is similar

to the non-linear Gaussian model, for the extension state see
[10]. Figure 7 shows this model applied to the two clusters
of measurements in Figure 1 that correspond to the pedestrian
and bicyclist.

III. THE EXTENDED TARGET CPHD FILTER

The approximation of the multi target distribution with its
first order moment, i.e. the PHD, and the Poisson assumption
used to produce closed form expressions for the PHD filter
update, represent a major loss of information.

In [21] it is shown that PHD filter’s cardinality estimate
decreases too much, compared to the optimal update, when
there is no detection and the value of PD used by the filter
is high. In [22], it is shown tat the opposite case also is
problematic, i.e. when the PD (used by the PHD filter) is low
and there are measurements, the expected number of targets
obtained by the PHD filter increases too much, compared to
the optimal update.

The phenomenon can be explained with a simple example.
Assuming no false alarms and a single target with existence
probability PE, then the expected number of targets should
be exactly unity when there is a detection. However, with the
PHD filter this number turns out to become 1 + PE(1 − pD),
whose bias increases as pD decreases.

For extended targets cardinality bias is also a problem. It
can be observed e.g. when a variable probability of detection,
as described above, is used and a target enters or exits an
occluded area. When the target is on the edge of the occluded
area, the probability of detection, as modelled in [9], [10], is
neither close to one or zero. If there are measurements orig-
inating from the target, the subsequent measurement update
will cause a bias in the cardinality estimate.

To solve this type of problems, Mahler developed the CPHD
filter, which, in addition to the PHD, propagates the cardinality
distribution in time. An extension of this work to extended
targets was presented in [22].

An example, where pD = 0.7, is used to compare the
extended target CPHD and PHD filters, see Figure 8 and 9,
respectively, is presented in [22]. In this experiment two
humans are present, entering the surveillance area around time
step k = 20 and k = 40, respectively. The second person
walks behind the first person and is therefore occluded around
time steps k = 75 − 80. The performance of the CPHD does
not change during this time, while the cardinality estimate of
the PHD filter is biased, especially as the target enters and
exits the occluded area. From the figures it is also obvious
that the PHD filter has a significantly biased sum of weights
when there is no target occlusion.

IV. CONCLUDING REMARKS

This paper presented a brief summary of the following
research undertaken at the division of Automatic Control at
Linköping University:

1) Two implementations of the extended target PHD filter
[6], one Gaussian mixture implementation [8], [9], and
one Gaussian inverse Wishart implementation [10].
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Fig. 8. The sum of weights (upper figure) and the cardinality estimates
(lower figure) of the ETT-CPHD filter when nominal probability of detection
is P 0

D = 0.7. Figure from [22].
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Fig. 9. The sum of weights (upper figure) and the cardinality estimates
(lower figure) of the ETT-PHD filter when nominal probability of detection
is P 0

D = 0.7. Figure from [22].

2) Approaches to estimating the size and shape of extended
targets, see [12], [18].

3) A Cardinalized PHD filter for multiple extended targets,
see [22].

The research summarized in this paper has focused on
tracking of moving targets. The simultaneous localisation and
mapping (SLAM) problem has similarities to target tracking.
An interesting and challenging direction for future work would
be to consider also stationary targets, called landmarks, and to
design an extended object SLAM algorithm.
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