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Abstract—In this paper we present a novel solution to the conditioned on the vehicle trajectory. This solution addesl
Multi-Vehicle SLAM (MVSLAM) problem by extending the  the map management, landmark detection uncertainty asel fal
random finite set (RFS) based SLAM filter framework using two measurements (clutter) in a single filtering step by repriirsg

recently developed multi-sensor information fusion approaches in the land K d ¢ RES d deli
finite set statistics (FISST). Our solution is based on the modeling € lanamark map and measurements as S and modeling

of the measurements and the landmark map as RFSs and the landmark map transition model more natural and appro-
factorizing the MVSLAM posterior into a product of the joint ~ priate manner. Moreover This approach catered propagation
vehicle trajectories posterior and the landmark map posterior of vehicle trajectory posterior using a particle filter ar t
conditioned the vehicle trajectories. The joint vehicle trajectories landmark map posterior conditioned on the vehicle trajgcto

posterior is propagated using a particle filter while the landmark . . . . .
map posterior conditioned on the vehicle trajectories is propa- using a Gaussian mixture (GM) implementation [16] of a PHD

gated using a Gaussian Mixture (GM) implementation of the filter.
probability hypothesis density (PHD) filter. In this paper we present a new solution to the Multi-Vehicle

SLAM (MVSLAM) problem by extending the RFS based
. INTRODUCTION SLAM filter framework. The proposed solution is based on
A number of Multi-Vehicle SLAM (MVSLAM) solutions the factorization of the full MVSLAM posterior into a produc
are found in the robotics literature [1] [2] [3] [4] [5] [6] of the joint vehicle trajectories posterior and the landmar
[7] developed by extending the conventional vector basedhp posterior conditioned on the joint vehicle trajectariehe
mono-SLAM algorithms such as extended Kalman filter baséghdmark map and the measurements are modeled as RFSs
SLAM (EKF-SLAM) [8], FastSLAM [9] and sparse extendedand the joint vehicle trajectories are propagated in tingeavi
information filter based SLAM (SEIF-SLAM) [10]. All these particle filter while the landmark conditioned on the veaicl
mono-SLAM algorithms solve the SLAM problem by propatrajectories is propagated using a GM implementation of a
gating a posterior probability density of a vector conagtof PHD filter.
the landmark map augmented with the vehicle state in time.
Hence all such algorithms require solving certain addilon |- RANDOM FINITE SET MULTI-VEHICLE SLAM
sub-problems such as data association, clutter filterirdy an PROBLEM
map management in order to produce a consistent solutionWe illustrate the RFS Multi-Vehicle SLAM algorithm for
In addition, landmark detection uncertainty or data asgmsi the case of two vehicles although it can be extended into a
uncertainty are not taken into account. As a result, alltiegs larger number of robots using the methods we present here.
MVSLAM algorithms inherit these problems. Let the landmark map be denoted by the 3ddj =
In order to address these issues in the conventional Mmoo, 1, Mk 2, ..., My 1, } at timek, wherel;, denotes the number
SLAM solutions, random finite set (RFS) modeling wasf landmarks present in the map. Let the time sequence
adopted into SLAM. The very first RFS based SLAM solutionf poses history of each vehicle be denoted K)f’",z =
was presented by Mullane et al. in [11], where they modeleat ") x{” . X717 where X" denotes the pose of ve-
the measurements and augmented vehicle-landmark map st@dke r, at timek. Let the time sequence of sets of range mea-
as RFSs. The augmented vehicle-landmark map state wagements obtained using range and bearing sensors mounted
propagated in time using a probability hypothesis densi§f each vehicle be denoted [g{rlz - [Z{T),Zz(r),...,Z,ir)],
(PHD) filter [12] [13] from which the state of the VehidewhereZ,(f) _ {Z](CrLzlgr%’_'_,Z(r) (T)} denotes the measurement
and the landmark locations were jointly estimated. Further ' ’ k,ng,
improving their original solution, in [14] [15] Mullane et Set received from vehicle at time k, while n](:) denotes the
al. proposed a Rao-Blackwellised PHD filtering solution bpumber of measurements. Lé’ﬁrk) = [Ul(’“),Uz(”,...,U]g’")]T
factorizing the full SLAM posterior into a product of thedenote the time sequence of control commands applied to each
vehicle trajectory posterior and the landmark map posterieehicle r, (r = 1,2) up to time k, where U,ET) denotes the



control command applied at time Using these information, 1V. THE PHD FILTER FORLANDMARK MAP POSTERIOR
we evaluate the MVSLAM posterior probability distribution ESTIMATION

given by, The landmark map posterior conditioned on the vehicle

(M. XD x@1 70 7@ ) ;2 1) @)y q trajectories is evaluated usiqg a PHD filter [12]. Let the PHD
Ptk (M X6, Xl 2 Zip Ui Uner Xo 7 Xo™)- (1) of the landmark map posterior at tinkeis given by,

here X" and X? respectively denote the initial poses of 1 2 1 2
V.V 0 0 . p v y it p Dk“k(Ck‘ZEIZ’Z§127XO(/3’Xé12)
first and second vehicles. )

1 2 1 2
IIl. FORMULATION OF PROPOSEDRANDOM FINITE SET

MULTI-VEHICLE SLAM SOLUTION then the number of landmarks in the maf,. in a regionS

The Multi-Vehicle SLAM posterior (1) is evaluated byCan be obtained by,
factorizing as a product of the joint vehicle poses posterio
and the landmark map posterior conditioned on the vehicle
poses as follows,

Nk\k:/SDk\k(ck\Zf:l;Z,Zﬁi,Xéﬁi,Xéii)de (6)

A. Landmark Map Prediction

pk|k(Mk7X§3£,X§?2\Z$2, Zl(?,z, Ul(:lk), Ul(?,z,Xo(l),Xé2)) The landmark map prediction posterior density is given by,
— 1) (2 1) 5(2) 2
_pk‘k(Mk‘Zl:k’lek7X0:k’XO:k) ( ) pk|k71(Mk|Z£1]3717Z§2]2717X81]2’X(52]3)

1 2 1 2 1 2 1 2
X pk“‘(Xl(]z’Xi£|Z§/27Z£]2’U1(12’U1(13’X(() )7X((] )) _ /f]\/[(Mk|Mk: 1 X(l) X(2)) (7)
= —LAE A
This factorization makes it possible to propagate the joint @ @) ) @
vehicle trajectories posterior using a particle filter ailog X Pr—1(Myk-1|Z1.5 15 2315 Xoue—10 Xoip—1)OMi—1
application Of, complex non-linear motion models. Moreovep g the corresponding predicted PHD can be obtained using
by representing the measurements and the landmark MAR PHD of the landmark map at tine— 1 as
as RFSs and modeling the landmark map transition model '

using finite set statistical (FISST) methods, it is possiiole Dk|k,1(gk|Z£},271,Zf,zfl,Xé},g,Xé?,Z)
evaluate the landmark map posterior in the presence of false: b |X(1) X(z)) 8)
measurements (clutter) with data association and landmark ~* Gl X X

detection uncertainty. + Dk—1|k—1(<k‘Z£;1k),_1v Z3) X8 LX) )dG

A. RFS Landmark Map Transition Model where bk,(§k|X,(€1),X,g2)) denotes the intensity of the newly

Let the RFS representing the landmark map at time 1 appearing landmarks in the joint sensor FOV.

be denoted byl/;_1, then the landmark map transition modeB. |andmark Map Update

attime is given by, The landmark map update posterior density is given by,

1) 72 (1) (2
M, = Fk(X,il),X,(f)) U U Y(Cho1) (3) Pre (Ml Z1 65 2y X Xoe)

Chor €My = (2", 22 | M, XD, X))
Mlz® 7@ x (@) ©
where the RFS (X", X{?)) denotes the newly appearing PRk -1\ Wk 21k 10 Z1:k—10 20k 2 0:k
landmarks in the joint sensor FOV, while the Bernoulli RFS lk\k_l(Z;(cl),Z;(f)\Zﬁz_l,Zl(?,g_l,XO(},z,Xéiz)
T(¢x—1) denotes the predicted state of the landmgrk; €

Assuming the number of false measurements produced by each
vehicle is Poisson distributed at an average\6f, and their
physical distribution given by:(")(z(")), the corresponding

. updated PHD can be obtained using two methods as follows.
Let M;, denote the predicted landmark map, whilg" 1) lterative update methodThe resultant PHD can be

denote the RFS representing the clutter received from eyptained by iteratively updating the predicted PHD (8) [13]
teroceptive sensor mounted otth vehicle at timek, then ysing each vehicles’ observations as follows.

corresponding measurements can be represented by the RFS(D 1) @) 1) ()
Dk\k(<k|Zl:k=Zl:k—pXo:kvXo;k)
1
20 =cul J el @ =Py D)
CREM;, Pl(pl)g](:)(z(l))DMk—l(Ck)

>

r . . . (1) (1)
where®\” (¢;) is a Bernoulli RFS representing the measure- )¢z AWM (z0) + [ Py g, (1)) Dygji—1 (G ) di
ment corresponding to landmack € M. (20)

M,

B. RFS Landmark Measurement Model




and The values ofpyy (i) andwp are given by,

1 2) 1 2
k|k(Ck|Z£lz7Z( Xé;LXé:ﬁ) pw (Cr) - o
1),(1 2
= (11— PY)D(G) P zzuxck)( S w0y
- k
P ) (2))D(P ) 1+ Dy [PYIS) (1= PG
+ (1)y;(2) @)
oy AP ) + [PRgP e)Dcd.  _) BT P oWl e e
R @y,@ p@
(]_]_) 1+Dk|k 1[(1—P )l (2>P ]
L (1) .
\év;ere, the abbreviation®y, ;1 (¢x) and Dk‘k(gk) are given P(l)l;f) (Ck)P@)ljz) () g 2(2)}
| (2) (1) (2 1+ Dy 1[P(1)Z(H>P(2)l(%g>] k o
Dk\k—l(Ck) Dk\k 1(<k|Zlk 1721:k—17X0:k’X0:k-) (12) (20)
1 1 1) (2 1 2 and,
Difi(G) = DU (G213 25 X0 Xi3) - (19) vy — — wepdw -
and, P, P, gtV (z1) andg® (2()) are given by, 205,z Hweo dw
where,
Py = PR (GIX) PR =PRGIXT)  (14) 0 (o - 816 XL) o2
21 \Sk 1 1
g]gl)(z(l)) _ g;il)(z(l)le,X,gl)) (15) /\( ) (1 )( ( ))
2
I L T ..
2 2
" M k (k )

WherePg') denotes the probability of detection of a landmark
by rth vehicle, which is often considered as a constant, whigad,
9\” (") is the measurement likelihood function.

1);(1) 1 _ p@y _ .
Hence the PHD of the measurement updated landmark map Lt Dy [Pp Loy (L= Pp7)] if W= {2, 7}

posterior (5) is approximated as, dw = 1+ Dypa [(1 = POV, PS) if W= {27}
Dk|k(gk|Z§1k, {k):,Xél,z,XéQ,z) an 1+ Dk\k—1[P( )ZSE)P@)I (2)] if W= {z,(cl),z,f)}
2 2
k\k(Ck|Zl k3 Z£ ;37Xé ;3,Xé ;2) For any function(Cx), Dyjr—1[h(Ck)] is given by,
This is a less computationally intensive approach for evalu
ating the PHD of the landmark map update posterior. Although Dyj—1[h(Ck)] = /h(fk)Dklk—l(Ck)de (25)

computationally efficient, this method produces varienDBH
under reordering of the sensor updates. This means that th@s usual Py’ = P4 (¢ X)) denotes the probability of
sensor update reordering results in different measuremedtection of a landmark;,, by rth vehicle and is considered
updated PHDs, yielding different estimations of the landmaas @ constant. Although computationally more demanding,
map posterior. Although this approach may not be completef§is approach produces an invariant PHD in a statistically
satisfactory from a theoretical point of view, in practide iPrincipled manner.
can be seen that this doesn’t produce significantly notleealy
performance difference in the simulations.

2) General multi-sensor update methotihe PHD update
can be obtained using the general multi-sensor update ohet
[17] as follows,

Implementation of the PHD filter

The PHD prediction and update equations are implemented
H‘?ing a GM implementation of the PHD filter [16]. The PHD
of the landmark map posterior at timke— 1 and the newly
appearing landmarks in the joint sensor FOV are represented
Dk\k(Ck\lelz,Zﬁz,XéZ, é,z) by a mixture of Gaussians, then the resultant measurement
—(1-P g))( —Pé))Dk\k—l(Ck) updated PHD at time: can be obtained as a mixture of
(18) Gaussian components from which the landmark locations and

the number of landmarks can be obtained [16] in order to solve

| D wr D w(G) | Duir-1(Gr) the MVSLAM problem.
PELz, WeP

RTICLE FILTER FORJOINT VEHICLE TRAJECTORIES

where the summation is taken over all so called ”bmar)y PA
AND LANDMARK MAP POSTERIORESTIMATION

partitions” P of Z, = z\" U z* (see [17] for more _
information). The notation p52 an stands for *P partitions The joint vehicle trajectories posterior is evaluated gsin

Z,, into binary cellsW”, where W € P has one of the particle filter, which can be represented by a set of weighted
following forms, particles denoted b§2; as follows,

w={:"} w={21 w={00:P) a9 Q= {w,[j],Xf}g’m,xfgvm}i (26)



where, N, denotes the number of particles amf] is the observations. It can also be seen that the loop closing error

weight of ith particle which can be obtained as, remains at an acceptable value of less than for both RFS-
(i MVSLAM-I AND RFS-MVSLAM-II algorithms.
o (27)

1 2 1 2 1),[i 2),[4
x lk|k—1(Z;£ ), Z](c )|Z§:,2_1, Zi;;z_ch();;z []7Xé;;2 H) VIl. COMPUTATIONAL COMPLEXITY

(1) (2)) (1) 2) (1) +(2)\ The computational complexity of the proposed MVSLAM
where ly—1(Zy ", 2y |21y Zip—1s Xogo Xoi) 1S e oo vion hased on the “lterative update method” method is
normah.zatlon' congtant " .(9).' Assuming thg number of el '(fknst), wherel}, is the number of features present in the

ments in My is Poisson dls_trlbuted, ext_endmg the approag int sensor FOV and., is the total number of measurements

proposed by Mullane et al. in [14] [15], it can be shown thatECeived from both vehicles. In comparison, for the two gkhi

lk|k71(Z](€1)a Z,22)|ZS£71, ng,pXé:l,z, Xé?,z) case, if th_e number of measurements rec_eived from eac_:hrsenso
B 1) .(1) /(1) @) 2)/.(2) is approximately equal té, the computational complexity of
H AT () H AT () (28) the plain vanilla "General multi-sensor update method"enkas
2ez® 2@ ez MVSLAM solution is no less thatO (I, 7! N).
x exp(Nijk — N1 — A — A®) In our solution, we avoid this heavy computational cost

here N dN iively denote th b fby avoiding the creation of partitions that contains eletsen
WRETE Nj—1 and Ay TESPEctively denote e NUMDET Oyt the form ({1 2(*}, where the corresponding Cartesian

landmarks present in the predicted Iar_1dmark map and 1 Stance between them (which is calculated after congrtin
number of landmarks present after updating the landmark Mo cartesian coordinates using the current vehicle etés)

NO.V\./ since the .PHD Of. the Ia_mdmz?\rk map _postenor I considerably larger. The reason behind this is that, e t
conditioned on the joint vehicle trajectories, the joimdanark 1) and 2@ ibl d
map and vehicle trajectories posterior at titnean be written measurements, andz, - are not most possibly generate
as due to the observation of the same feature (mutual feature

' observations). Hence we can reduce the number of generated

[ Wl @l p 7 @) ).l (2).[] } ¢ binary partitions yielding a reduced computational cdsthé
{w’f X X D (Gl 2 Zaiges Xowe™ s Xowk ;95-_1 number of common feature observations by two vehicles are
( given byey, then the number of binary partitions generated is

VI. SIMULATION RESULTS given by,

Simulation results are used to evaluate the performance €k €k €k €k
of the proposed MVSLAM algorithms. From here onwards Ve =1+ <1> * <2) . (3) Tt <€,€> (30)
the proposed MVSLAM solutions are referred to as RFS- . .
MVSLAM-I and RFS-MVSLAM-II respectively denoting the &S 2 result, the computational complexity can be reduced to
solutions based on "iterative update method” and the "gﬂnep(l’f’\yknkm)' ,
multi-sensor update method”. Two vehicles with identical Since the number of mutual feature observations at any
control and sensor parameters are driven on two differéffyen time is comparatively smaller, this results in a im-
vehicle trajectories on a simulaiton environment (Fig. jroved computational performance. Further improvemergs a
consisting of 67 static features. The control parametene w@Pt@ined by adopting sensor consistency gating. The same
chosen as, the standard deviation of velocityOgs ms~!, method can be applied to reduce the computational compllexn
the standard deviation of heading change2&sThe sensor of a Iarggr numberlof robots. Neverthelgss the computdtiona
parameters were chosen as, the standard deviation of raRg@Plexity grows with the number of vehicles due to the large
as 0.3 m and standard deviation of bearing 8s°. The Number partitions generated.
maximum range of a sensor is set3d m. The number of
false measurements generated by each vehicle is assumed to
be Poisson distributed with an average of 5 per scan and hai this paper we have presented a noval Multi-Vehicle
a uniform spatial distribution in the sensor FOM180° to SLAM (MVSLAM) solution by extending the RFS based
180°). The probability of detection of a feature is is set as 0.95LAM filter framework using two recently developed multi-
and the probability of survival of a feature in the landmarkam sensor fusion techniques in finite set statistics (FISSTep T
is set as 0.99. RFS representation of the landmark map and the measure-

A comparison of estimated vehicle trajectories against tiheents enables modeling of the landmark map transition model
actual vehicle trajectories obained from two sample rumsd observation model in a more natural manner, resulting a
of RFS-MVSLAM-I and RFS-MVSLAM-II algorithms are Bayesian MVSLAM algorithm with inbuilt map management,
shown in Fig.2. The RMS vehicle position errors from 28lata association and clutter filtering. The performance-cha
MC runs are compared in Fig.3. In the long run it can be seanteristics obtained via the simulation results suggdsas t
that the RFS-MVSLAM-II algorithm produces better resultshe proposed solutions produces robust results under false
in the overlapping region compared to the RFS-MVSLAMmeasurements with data association and landmark detection
| algorithm due to the explicit treatment for mutual featurencertainty.

VIII. CONCLUSION
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