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Abstract—In this paper we present a novel solution to the
Multi-Vehicle SLAM (MVSLAM) problem by extending the
random finite set (RFS) based SLAM filter framework using two
recently developed multi-sensor information fusion approaches in
finite set statistics (FISST). Our solution is based on the modeling
of the measurements and the landmark map as RFSs and
factorizing the MVSLAM posterior into a product of the joint
vehicle trajectories posterior and the landmark map posterior
conditioned the vehicle trajectories. The joint vehicle trajectories
posterior is propagated using a particle filter while the landmark
map posterior conditioned on the vehicle trajectories is propa-
gated using a Gaussian Mixture (GM) implementation of the
probability hypothesis density (PHD) filter.

I. I NTRODUCTION

A number of Multi-Vehicle SLAM (MVSLAM) solutions
are found in the robotics literature [1] [2] [3] [4] [5] [6]
[7] developed by extending the conventional vector based
mono-SLAM algorithms such as extended Kalman filter based
SLAM (EKF-SLAM) [8], FastSLAM [9] and sparse extended
information filter based SLAM (SEIF-SLAM) [10]. All these
mono-SLAM algorithms solve the SLAM problem by propa-
gating a posterior probability density of a vector consisting of
the landmark map augmented with the vehicle state in time.
Hence all such algorithms require solving certain additional
sub-problems such as data association, clutter filtering and
map management in order to produce a consistent solution.
In addition, landmark detection uncertainty or data association
uncertainty are not taken into account. As a result, all existing
MVSLAM algorithms inherit these problems.

In order to address these issues in the conventional mono-
SLAM solutions, random finite set (RFS) modeling was
adopted into SLAM. The very first RFS based SLAM solution
was presented by Mullane et al. in [11], where they modeled
the measurements and augmented vehicle-landmark map state
as RFSs. The augmented vehicle-landmark map state was
propagated in time using a probability hypothesis density
(PHD) filter [12] [13] from which the state of the vehicle
and the landmark locations were jointly estimated. Further
improving their original solution, in [14] [15] Mullane et
al. proposed a Rao-Blackwellised PHD filtering solution by
factorizing the full SLAM posterior into a product of the
vehicle trajectory posterior and the landmark map posterior

conditioned on the vehicle trajectory. This solution addressed
the map management, landmark detection uncertainty and false
measurements (clutter) in a single filtering step by representing
the landmark map and measurements as RFSs and modeling
the landmark map transition model more natural and appro-
priate manner. Moreover This approach catered propagation
of vehicle trajectory posterior using a particle filter and the
landmark map posterior conditioned on the vehicle trajectory
using a Gaussian mixture (GM) implementation [16] of a PHD
filter.

In this paper we present a new solution to the Multi-Vehicle
SLAM (MVSLAM) problem by extending the RFS based
SLAM filter framework. The proposed solution is based on
the factorization of the full MVSLAM posterior into a product
of the joint vehicle trajectories posterior and the landmark
map posterior conditioned on the joint vehicle trajectories. The
landmark map and the measurements are modeled as RFSs
and the joint vehicle trajectories are propagated in time via a
particle filter while the landmark conditioned on the vehicle
trajectories is propagated using a GM implementation of a
PHD filter.

II. RANDOM FINITE SET MULTI -VEHICLE SLAM
PROBLEM

We illustrate the RFS Multi-Vehicle SLAM algorithm for
the case of two vehicles although it can be extended into a
larger number of robots using the methods we present here.

Let the landmark map be denoted by the setMk =
{mk,1,mk,2, ...,mk,lk} at timek, wherelk denotes the number
of landmarks present in the map. Let the time sequence
of poses history of each vehicle be denoted byX

(r)
1:k =

[X
(r)
1 ,X

(r)
2 , ...,X

(r)
k ]T , whereX

(r)
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hicle r, at timek. Let the time sequence of sets of range mea-
surements obtained using range and bearing sensors mounted
on each vehicle be denoted byZ(r)
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(r)
1 , Z

(r)
2 , ..., Z
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set received from vehicler at timek, while n
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number of measurements. LetU
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denote the time sequence of control commands applied to each
vehicle r, (r = 1, 2) up to time k, whereU

(r)
k denotes the



control command applied at timek. Using these information,
we evaluate the MVSLAM posterior probability distribution
given by,
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whereX
(1)
0 andX

(2)
0 respectively denote the initial poses of

first and second vehicles.

III. F ORMULATION OF PROPOSEDRANDOM FINITE SET

MULTI -VEHICLE SLAM SOLUTION

The Multi-Vehicle SLAM posterior (1) is evaluated by
factorizing as a product of the joint vehicle poses posterior
and the landmark map posterior conditioned on the vehicle
poses as follows,
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This factorization makes it possible to propagate the joint
vehicle trajectories posterior using a particle filter allowing
application of complex non-linear motion models. Moreover,
by representing the measurements and the landmark map
as RFSs and modeling the landmark map transition model
using finite set statistical (FISST) methods, it is possibleto
evaluate the landmark map posterior in the presence of false
measurements (clutter) with data association and landmark
detection uncertainty.

A. RFS Landmark Map Transition Model

Let the RFS representing the landmark map at timek − 1
be denoted byMk−1, then the landmark map transition model
at timek is given by,

Mk = Γk(X
(1)
k ,X

(2)
k ) ∪
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where the RFSΓk(X
(1)
k ,X

(2)
k ) denotes the newly appearing

landmarks in the joint sensor FOV, while the Bernoulli RFS
Υ(ζk−1) denotes the predicted state of the landmarkζk−1 ∈
Mk.

B. RFS Landmark Measurement Model

Let Mk denote the predicted landmark map, whileC
(r)
k

denote the RFS representing the clutter received from ex-
teroceptive sensor mounted onrth vehicle at timek, then
corresponding measurements can be represented by the RFS,

Z
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whereΘ
(r)
k (ζk) is a Bernoulli RFS representing the measure-

ment corresponding to landmarkζk ∈ Mk.

IV. T HE PHD FILTER FORLANDMARK MAP POSTERIOR

ESTIMATION

The landmark map posterior conditioned on the vehicle
trajectories is evaluated using a PHD filter [12]. Let the PHD
of the landmark map posterior at timek is given by,
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then the number of landmarks in the mapMk in a regionS

can be obtained by,
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A. Landmark Map Prediction

The landmark map prediction posterior density is given by,
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and the corresponding predicted PHD can be obtained using
the PHD of the landmark map at timek − 1 as,
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where bk(ζk|X
(1)
k ,X

(2)
k ) denotes the intensity of the newly

appearing landmarks in the joint sensor FOV.

B. Landmark Map Update

The landmark map update posterior density is given by,
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Assuming the number of false measurements produced by each
vehicle is Poisson distributed at an average ofλ(r), and their
physical distribution given byc(r)(z(r)), the corresponding
updated PHD can be obtained using two methods as follows.

1) Iterative update method:The resultant PHD can be
obtained by iteratively updating the predicted PHD (8) [13]
using each vehicles’ observations as follows.
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and
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whereP
(r)
D denotes the probability of detection of a landmark

by rth vehicle, which is often considered as a constant, while
g
(r)
k (z(r)) is the measurement likelihood function.
Hence the PHD of the measurement updated landmark map

posterior (5) is approximated as,
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This is a less computationally intensive approach for evalu-
ating the PHD of the landmark map update posterior. Although
computationally efficient, this method produces varient PHDs
under reordering of the sensor updates. This means that the
sensor update reordering results in different measurement-
updated PHDs, yielding different estimations of the landmark
map posterior. Although this approach may not be completely
satisfactory from a theoretical point of view, in practice it
can be seen that this doesn’t produce significantly noticeable
performance difference in the simulations.

2) General multi-sensor update method:The PHD update
can be obtained using the general multi-sensor update method
[17] as follows,
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where the summation is taken over all so called ”binary
partitions” P of Zk = Z

(1)
k ∪ Z

(2)
k (see [17] for more

information). The notation, ”P�2Zk” stands for ”P partitions
Zk into binary cellsW ”, where W ∈ P has one of the
following forms,
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The values ofρW (ζk) andωP are given by,
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and,
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For any functionh(ζk), Dk|k−1[h(ζk)] is given by,

Dk|k−1[h(ζk)] =

∫

h(ζk)Dk|k−1(ζk)dζk (25)

As usualP (r)
D = P

(r)
D (ζk|X

(r)
k ) denotes the probability of

detection of a landmarkζk, by rth vehicle and is considered
as a constant. Although computationally more demanding,
this approach produces an invariant PHD in a statistically
principled manner.

C. Implementation of the PHD filter

The PHD prediction and update equations are implemented
using a GM implementation of the PHD filter [16]. The PHD
of the landmark map posterior at timek − 1 and the newly
appearing landmarks in the joint sensor FOV are represented
by a mixture of Gaussians, then the resultant measurement
updated PHD at timek can be obtained as a mixture of
Gaussian components from which the landmark locations and
the number of landmarks can be obtained [16] in order to solve
the MVSLAM problem.

V. PARTICLE FILTER FOR JOINT VEHICLE TRAJECTORIES

AND LANDMARK MAP POSTERIORESTIMATION

The joint vehicle trajectories posterior is evaluated using a
particle filter, which can be represented by a set of weighted
particles denoted byΩk as follows,
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where, Ns denotes the number of particles andw
[i]
k is the

weight of ith particle which can be obtained as,
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normalization constant in (9). Assuming the number of ele-
ments inMk is Poisson distributed, extending the approach
proposed by Mullane et al. in [14] [15], it can be shown that,
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where Nk|k−1 and Nk respectively denote the number of
landmarks present in the predicted landmark map and the
number of landmarks present after updating the landmark map.

Now since the PHD of the landmark map posterior is
conditioned on the joint vehicle trajectories, the joint landmark
map and vehicle trajectories posterior at timek can be written
as,
{

w
[i]
k ,X

(1),[i]
k ,X

(2),[i]
k ,Dk|k(ζk|Z

(1)
1:k , Z

(2)
1:k ,X

(1),[i]
0:k ,X

(2),[i]
0:k )

}Ns

i=1
(29)

VI. SIMULATION RESULTS

Simulation results are used to evaluate the performance
of the proposed MVSLAM algorithms. From here onwards
the proposed MVSLAM solutions are referred to as RFS-
MVSLAM-I and RFS-MVSLAM-II respectively denoting the
solutions based on ”iterative update method” and the ”general
multi-sensor update method”. Two vehicles with identical
control and sensor parameters are driven on two different
vehicle trajectories on a simulaiton environment (Fig. 1)
consisting of 67 static features. The control parameters were
chosen as, the standard deviation of velocity as0.3 ms−1,
the standard deviation of heading change as20. The sensor
parameters were chosen as, the standard deviation of range
as 0.3 m and standard deviation of bearing as0.50. The
maximum range of a sensor is set to30 m. The number of
false measurements generated by each vehicle is assumed to
be Poisson distributed with an average of 5 per scan and has
a uniform spatial distribution in the sensor FOV (−1800 to
1800). The probability of detection of a feature is is set as 0.95
and the probability of survival of a feature in the landmark map
is set as 0.99.

A comparison of estimated vehicle trajectories against the
actual vehicle trajectories obained from two sample runs
of RFS-MVSLAM-I and RFS-MVSLAM-II algorithms are
shown in Fig.2. The RMS vehicle position errors from 25
MC runs are compared in Fig.3. In the long run it can be seen
that the RFS-MVSLAM-II algorithm produces better results
in the overlapping region compared to the RFS-MVSLAM-
I algorithm due to the explicit treatment for mutual feature

observations. It can also be seen that the loop closing error
remains at an acceptable value of less than3 m for both RFS-
MVSLAM-I AND RFS-MVSLAM-II algorithms.

VII. C OMPUTATIONAL COMPLEXITY

The computational complexity of the proposed MVSLAM
solution based on the ”Iterative update method” method is
O(l̃knkNs), wherel̃k is the number of features present in the
joint sensor FOV andnk is the total number of measurements
received from both vehicles. In comparison, for the two vehicle
case, if the number of measurements received from each sensor
is approximately equal tõnk the computational complexity of
the plain vanilla ”General multi-sensor update method” based
MVSLAM solution is no less thanO(l̃kñ!Ns).

In our solution, we avoid this heavy computational cost
by avoiding the creation of partitions that contains elements
of the form {z

(1)
k , z

(2)
k }, where the corresponding Cartesian

distance between them (which is calculated after converting
into Cartesian coordinates using the current vehicle estimates)
is considerably larger. The reason behind this is that, the two
measurementsz(1)

k and z
(2)
k are not most possibly generated

due to the observation of the same feature (mutual feature
observations). Hence we can reduce the number of generated
binary partitions yielding a reduced computational cost. If the
number of common feature observations by two vehicles are
given byεk, then the number of binary partitions generated is
given by,

Ψk = 1 +

(

εk

1

)

+

(

εk

2

)

+

(

εk

3

)

+ ... +

(

εk

εk

)

(30)

as a result, the computational complexity can be reduced to
O(l̃kΨknkNs).

Since the number of mutual feature observations at any
given time is comparatively smaller, this results in a im-
proved computational performance. Further improvements are
obtained by adopting sensor consistency gating. The same
method can be applied to reduce the computational complexity
of a larger number of robots. Nevertheless the computational
complexity grows with the number of vehicles due to the larger
number partitions generated.

VIII. C ONCLUSION

In this paper we have presented a noval Multi-Vehicle
SLAM (MVSLAM) solution by extending the RFS based
SLAM filter framework using two recently developed multi-
sensor fusion techniques in finite set statistics (FISST). The
RFS representation of the landmark map and the measure-
ments enables modeling of the landmark map transition model
and observation model in a more natural manner, resulting a
Bayesian MVSLAM algorithm with inbuilt map management,
data association and clutter filtering. The performance char-
acteristics obtained via the simulation results suggests that
the proposed solutions produces robust results under false
measurements with data association and landmark detection
uncertainty.
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(a) RFS-MVSLAM-I with λ(r)
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Fig. 2. A comparison of estimated vehicle trajectories (in red), superimposed on ground truth (in blue) with estimated features (cyan circles) and actual
features (black stars), of a sample run of each algorithm withthe clutter rateλ(r)

= 5.
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Fig. 3. RMS Vehicle position errors of 25 MC runs. Dotted graph corresponds to the first vehicle, while the non-dotted graph corresponds to the second
vehicle.
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Fig. 1. Ground truth of the vehicle trajectories (in blue) with randomly placed
landmarks (black stars) are shown with false features (in green) received from
a sample run. The number of landmarks present in the simulation enviornment
is 67.
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