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Abstract—The random finite set formulation for simultaneous
localisation and mapping (SLAM) provides a means of estimating
the number of landmarks in cluttered environments with missed
detections within a unified probabilistic framework. This article
develops the random finite set formulation further by introducing
forward-backward smoothing. The algorithms are implemented
with sequential Monte Carlo and Gaussian mixture techniques,
and demonstrated in simulated scenarios. It is shown that when
the vehicle closes the loop, the smoother is able to improve the
estimated vehicle trajectory.

I. INTRODUCTION

The mathematical foundation for multi-sensor multi-target
data fusion was proposed by Mahler as a systematic means
of combining evidence in the presence of uncertainty in a
unified way using random finite sets [1], [2]. The Probability
Hypothesis Density (PHD) filter was proposed as a tractable
approximation to the optimal multi-target Bayesian filter [3],
[4]. A Sequential Monte Carlo approach to PHD filtering
was proposed by Vo, Singh and Doucet [5], and further
developments have examined or refined different aspects of the
SMC methodology applied to PHD filtering [6]–[9]. A closed-
form solution was derived using Gaussian mixture techniques
by Vo and Ma [10], which has also led to a number of further
developments and applications [11]–[16].

The problem of simultaneously localising the position of
a vehicle and mapping its environment (known as SLAM)
has received a great deal of interest in robotics since its
proposal by Smith and Cheeseman [17]. Typically, this in-
volves propagating a joint posterior distribution of the vehicle
position and landmarks, using data association strategies from
the target tracking literature for managing measurements fed
to the filter and the number of objects. The random finite
set approach to SLAM was proposed by Mullane, Vo and
Adams with a Rao-Blackwellised approach [18]. Lee, Clark
and Salvi [19] investigated the random finite set approach
for SLAM using single-cluster Poisson point processes, with
fewer approximations in the filter. The single-cluster PHD
filter [20] was originally proposed as a special case of a multi-
group multi-object filter which has been developed for tracking
groups of targets [21], and extended objects [22]. In addition to
the work on SLAM [19], the approach has been also developed

as a unified approach for jointly tracking a variable number
of targets and sensor registration [23].

In this paper, we develop the single-cluster point process
approach further by introducing forward-backward smoothing.
The PHD smoother, based on Kitagawa’s forward-backward
smoother [24], was first hypothesised by Nandakumaran et
al. [25], and then confirmed with the derivation by Mahler et
al. [26], [27] using Finite Set Statistics. A simpler derivation
of the PHD smoother was proposed by Clark [28], and it has
also been investigated by Hernandez [29]. Practical implemen-
tations include a sequential Monte Carlo version [27], and
a closed form solution with Gaussian mixture models [30],
[31]. A full Bayesian forward-backward smoother has been
developed for a simpler model, where there is at most one
target [32]–[34].

The paper is structured as follows. In the next section, we
review some concepts in point process theory. In section 3, we
describe Bayesian filtering and forward-backward smoothing
for a single-cluster process and the Probability Hypothesis
Density approximations. In section 4, we describe the imple-
mentation. Section 5 presents simulated results. We conclude
in section 6.

II. POINT PROCESSES

Point processes are used to describe multi-object systems
with uncertainty in both the number of objects and the
locations of the objects. These can be conveniently described
with the probability generating functional, described next.

A. Probability generating functionals (p.g.fls.)

The probability generating functional (p.g.fl.) of a point
process is defined with

G(h) =

∞∑
n=0

1

n!

(
n∏
i=1

∫
dxih(xi)

)
p (x1, . . . , xn) , (1)

where p(x1, . . . , xn) ≥ 0 are known as Janossy densities, and
G(1) = 1. The first-order factorial moment density, known in
the tracking community as the Probability Hypothesis Density



(PHD), is

D(x) =

∞∑
n=1

1

(n− 1)!

∫
p(x, x2 . . . , xn)dx2 . . . dxn (2)

1) Example: Poisson point process: One of the most simple
point processes is the Poisson point process, since it can be
uniquely characterised by its intensity, or PHD,

D(x) = µp(x), (3)

where µ is the mean number of objects, each independently
and identically distributed according to single-object spatial
distribution p(x). The nth-order Janossy density is found with

p(x1, . . . , xn) = exp(−µ)
n∏
i=1

µp(xi). (4)

The p.g.fl. of the Poisson point process is

G(h) = exp (µ(p[h]− 1)) , (5)

where we define functional

p[h] =

∫
p(x)h(x)dx. (6)

2) Example: Single-cluster Poisson process: For SLAM
applications, we are interested in estimating the joint state of
the vehicle, as well as an indeterminate number of landmarks,
or objects. In this case, it is more appropriate to consider
a point process that models this explicitly. We consider a
hierarchical point process, with a single-object process, s(·),
describing the vehicle state, and a conditional multi-object
process describing the positions of the landmarks. This can be
modelled by a cluster process [35]. The single-cluster point
process has probability generating functional

G(h) = s [Gd(h|·)] (7)

where h is a function of both inner functional Gd, and outer
functional s[·] is defined in equation (6). For a Poisson inner
functional, this becomes

G(h) = s [exp (µ(p[h|·]− 1))] (8)

The PHD D(c, x) of a single-cluster Poisson process is given
by

D(c, x) = s(c)D(x|c), (9)

where, in the SLAM application, s(c) is the posterior of
the vehicle state, D(x|c) = µ(c)p(x|c) is the PHD of the
landmarks conditioned on the vehicle state, and µ(c) is the
expected number of landmarks conditioned on vehicle position
c, and each landmark is distributed according to p(x|c).

In the following sections, for compactness of notation, we
write

p(c, x1, . . . , xn) = p(X) = s(X)p(M|X), (10)

where X = (X,M), where X = c is the vehicle position, and
M is the map of features, {x1, . . . , xn}.

III. SINGLE-CLUSTER MULTI-OBJECT BAYESIAN
FILTERING AND SMOOTHING

Let Xk be the random vector that represents the vehicle
state, and Mk be the Random Finite Set (RFS) that represents
the location of map features, which exist in the space X ⊆
Rnm .

Xk = [xk,1 . . . xk,nx ] (11)
Mk = {mk,1 . . .mk,νk} ∈ F(X ) (12)

Where F(X ) is the set of all finite subsets of X . In addition,
the vehicle receives measurements which are represented as
an RFS Zk taken from the measurement space Z ⊆ Rnz .

Zk = {zk,1 . . . zk,µk
} ∈ F(Z) (13)

This RFS is the union of measurements that originate from
true targets, and measurements generated by a Poisson false
alarm process whose PHD is κ(z) = λU(Z), where λ is the
Poisson rate parameter and U(Z) is the uniform distribution
over Z . The measurement model z = h(m,X) relates the
measurements to landmark locations and the vehicle pose.

Let pk(Xk) = pk(Xk,Mk) be the joint posterior probability
distribution of the vehicle state Xk and multi-object map
state Mk at time step k. From a methodological perspective,
the estimation problem to solve remains the same as other
SLAM formulations: the sequential Bayesian estimation of
pk(Xk). For brevity, let X = Xk and X′ = Xk−1. In the
following sections we describe the time-evolution, data update,
and smoothing equations for the PHD.

A. Time-update

The Chapman-Kolmogorov equation describes the evolution
of stochastic processes over time, i.e.

pk|k−1(X|Z1:k−1) =

∫
πk|k−1(X|X′)pk−1(X′) δX′ (14)

where πk|k−1(x|x′) is a Markov transition from time-step k−1
to time-step k, pk−1(x|z1:k−1) is the posterior at time-step
k − 1, and pk|k−1(x|z1:k−1) is the predicted process to time-
step k. Lemma 1 describes the evolution of the parent state
and conditional daughter state posteriors. This is then used to
determine the evolution of the single-cluster PHD equations
in Lemma 2.

Lemma 1: Suppose that the Markov transition for the clus-
ter process factorises as

πk|k−1(X|X′) = πk|k−1(X|X′)πk|k−1(M|M′) (15)

Then the Chapman-Kolmogorov equations for the parent and
conditional daughter states are

pk|k−1(X|Z1:k−1) =

∫
πk|k−1(X|X′)pk−1(X′)dX ′

(16)

pk|k−1(M|X,Z1:k−1) =

∫
πk|k−1(M|M′)pk−1(M′|X)δM′

(17)



Proof: Substituting the Markov transition into the
Chapman-Kolmogorov equation gives

pk|k−1(X|Z1:k−1) (18)

=

∫
πk|k−1(X|X′)pk−1(X′)pk|k−1(M|X′,Z1:k−1)dX

′,

where the conditional daughter process pk|k−1(M|X,Z1:k−1)
evolves according to

pk|k−1(M|X,Z1:k−1) = (19)∫
πk|k−1(M|M′)pk−1(M′|X,Z1:k−1) δM

′.

Using the fact that

pk|k−1(X|Z1:k−1) = pk|k−1(X|Z1:k−1)pk|k−1(M|X,Z1:k−1),
(20)

we get the desired result.

Lemma 2: The predicted parent and daughter processes are
found with

sk|k−1(X) =

∫
sk−1(X

′)πk|k−1(X|X′)dX′ (21)

D̃k|k−1(m|X′) = γk|k−1(m|X) +∫
Dk−1(m

′|X′)π̃k|k−1(m|m′) dm′ (22)

πk|k−1(X|X′) is the Markov transition density for the parent
process, and π̃k|k−1(m|m′) is the conditional Markov tran-
sition density for the daughter process; γk|k−1(m|X) is the
PHD for the daughter birth process.

Proof: The proof is a special case of the multi-group
multi-object prediction presented in [21], where there is at
exactly one parent point.

B. Measurement update

When new measurements are received, the predicted distri-
bution can be updated with Bayes’ rule, i.e.

pk(X|Z1:k) =
gk(Zk|X)pk|k−1(X|Z1:k−1)∫
gk(Zk|X)pk|k−1(X|Z1:k−1) δX

(23)

Lemma 3 describes the updated parent state and conditional
daughter state. This is then used in Lemma 4 to determine the
updated single-cluster PHD equations.

Lemma 3: The parent state and conditional daughter pro-
cess are updated with

pk(X|Z1:k) =
LZk

(X)pk|k−1(X|Z1:k−1)∫
LZk

(X)pk|k−1(X|Z1:k−1) dX
(24)

pk(M|X,Z1:k) =
gk(Zk|M)pk|k−1(M|X,Z1:k−1)

LZk
(X)

(25)

where

LZk
(X) =

∫
gk(Zk|M)pk|k−1(M|X,Z1:k−1) δM. (26)

Proof: The proof follows by noting that

pk(X|Z1:k) = pk(X|Z1:k)pk(M|X,Z1:k). (27)

Lemma 4: Let us assume that the predicted posterior is a
single-cluster Poisson process. Then the single-cluster PHD
update can be separated into a parent update and a daughter
update as follows.

sk(X) =
LZk

(X)sk|k−1(X)∫
LZk

(X)sk|k−1(X) dX
(28)

D̃k(m|X) = (1− pD(m|X))D̃k|k−1(m|X) +∑
z∈Zk

pD(m|X)D̃k|k−1(m|X)gk(z|m)

κk(z) +
∫
pD(m|X)D̃k|k−1(m|X)gk(z|m) dm

(29)

Where gk(z|m) is the single-object measurement likelihood,
and LZk

(X) is the multi-object measurement likelihood, both
conditional on the vehicle state. The multi-object likelihood is
defined as

LZk
(X) = exp

{
−
∫
pD(m|X)D̃k|k−1(m|X) dm

}
×∏

z∈Zk

(
κk(z) +

∫
pD(m|X)D̃k|k−1(m|X)gk(z|m) dm

)
(30)

Proof: The multi-object likelihood LZk
(X) follows from

equation (121) in [3]. The conditional PHD follows from
equation (123) in [3].

C. Forward-backward smoother
The forward-backward smoother [24] is used to refine state

estimates in the past based on current measurements. The
posterior at time-step k based on measurement sets Z1:k′ =
Z1, . . . , Z

′
k, where k′ > k is given by equations

pk|k′(X|Z1:k′) =

∫
pk|k+1(X|Y,Z1:k)pk+1|k′(Y|Z1:k′) δY

(31)

pk|k+1(X|Y,Z1:k) =
πk+1|k(Y|X)pk|k(X|Z1:k)∫

πk+1|k(Y|X′)pk|k(X′|Z1:k) δX′
(32)

Lemma 5 factorises equation (31) into parent and condi-
tional daughter posteriors. Making Poisson approximation, this
is then applied in Theorem 1 to find the smoothed single-
cluster PHD equations.

Lemma 5: The parent state and conditional daughter pro-
cess are updated with

pk|k+1(X|Y,Z1:k) =
πk+1|k(Y|X)LMY (X)pk|k(X|Z1:k)∫
πk+1|k(Y|X)LMY (X)pk|k(X|Z1:k) dX

(33)

and

pk|k+1(MX|X,Y,Z1:k) =
πk+1|k(MY|MX)pk|k(MX|X,Z1:k)

LMY (X)
,

(34)



where

LMY
(X) =

∫
πk+1|k(MY|MX)pk|k(MX|X,Z1:k) δMX.

(35)

Proof: The result follows from noting that

pk|k+1(X|Y,Z1:k) = pk|k+1(X|Y,Z1:k)pk|k+1(MX|X,Y,Z1:k),
(36)

and applying Lemma 3.

Theorem 1: Suppose that pk|k(MX|X,Z1:k) is Poisson and
that equation (33) can be approximated with

pk|k+1(X|Y,Z1:k) =
πk+1|k(Y|X)pk|k(X|Z1:k)∫
πk+1|k(Y|X)pk|k(X|Z1:k) dX

.

(37)

Then the smoothed single-cluster PHD approximation to equa-
tion (31) becomes

sk|k′(X) =

∫
sk|k+1(X|Y)sk+1|k′(Y)dY (38)

Dk|k′(m|X) =

(1− pS(m|X))D̃k|k(m|X) +∫
pS(m|X)D̃k|k(m|X)πk+1|k(Y|m)

γk+1(Y) +
∫
pS(m|X)D̃k|k(m|X)πk+1|k(Y|m) dm

dY

(39)

Proof: The proof follows by applying Lemma 4, and then
Campbell’s theorem (see, for example, equation (11) in [28])
in equation (31). So, applying Lemma 4, to equation (33), we
have the single-cluster PHD update separated into a parent
update and a daughter update as follows.

sk|k+1(X|Y) =
πk+1|k(Y|X)sk|k(X)∫
πk+1|k(Y|X)sk|k(Y) dY

(40)

D̃k|k+1(m|X) = (1− pS(m|X))D̃k|k(m|X) +∑
y∈MY

pS(m|X)D̃k|k(m|X)πk+1|k(y|m)

γk+1(y) +
∫
pS(m|X)D̃k|k(m|X)πk+1|k(y|m) dm

(41)

Applying Campbell’s theorem gives the required result.

IV. IMPLEMENTATION

We implement the Single-Cluster PHD filter using a Dirac
mixture model for the PHD of the parent. Each component
of the parent mixture model is associated with a Gaussian
mixture model which represents the PHD of the daughter
process conditioned on that particular parent component. At
each iteration of the filter, we begin with the following prior

PHDs:

sk−1(X) =

Nk−1∑
i=1

η
(i)
k−1δ(X−X

(i)
k−1) (42)

D
(i)
k−1(m|X) =

J
(i)
k−1∑
j=1

w
(j|i)
k−1N (m;µ

(j|i)
k−1 ,P

(j|i)
k−1) (43)

The notation N (m;µ,P) is used to denote a Gaussian dis-
tribution with mean vector µ and covariance matrix P, and
δ(X − α) denotes the Dirac delta distribution centred at α.
Mixture models may be conveniently represented by the set
of their parameters, so we may alternatively express the prior
PHDs like so:

sk−1(X) = {η(i)k−1,X
(i)
k−1}

Nk−1

i=1 (44)

D
(i)
k−1(m|X) = {w(j|i)

k−1 , µ
(j|i)
k−1 ,P

(j|i)
k−1}

J
(i)
k−1

j=1 (45)

A. Map Prediction

The prediction for the daughter process is the same as that
for the standard Gaussian mixture PHD filter. However, in
accordance to the measurement-driven birth density proposed
in [8], [9], the addition of the birth PHD γk|k−1(m|X) is
postponed until the update step. Hence, the predicted map
PHD consists only of the propagation of features which survive
from the previous time step.

D̃
(i)
k|k−1(m|X

(i)
k−1) = pS(m|X(i)

k−1)

×
J

(i)

S,k|k−1∑
j=1

w
(j|i)
S,k|k−1N (m;µ

(j|i)
S,k|k−1,P

(j|i)
S,k|k−1|X) (46)

w
(j|i)
S,k|k−1 = w

(j|i)
k−1 (47)

µ
(j|i)
S,k|k−1 = f(µ

(j|i)
k−1 |X) (48)

P
(j|i)
S,k|k−1 = FkP

(j|i)
k−1F

T
k +WkQkW

T
k (49)

F
(j|i)
k =

∂

∂m
f(m,X)

∣∣∣∣
m=µ

(j|i)
k−1 ,X=X

(i)
k−1

(50)

Here, f(µ|X) is the function that models the evolution of map
features, conditional on the vehicle state.

B. Vehicle Prediction

The sampling property of the Dirac delta function means
that substitution of (42) and (43) into (21) results in the
following sum:

Dk|k−1(X,m) =

Nk−1∑
i=0

πk|k−1(X|X
(i)
k−1)D̃k|k−1(m|X

(i)
k−1)

(51)
The Markov transition density is then approximated by sam-
pling M particles from it. The result is a new Dirac mixture
for the parent, containing Nk−1×M components. Because the
predicted maps D̃k|k−1(m|X′i) do not depend on the current
predicted vehicle pose, each of the M parent components that
originate from the same X

(i)
k−1 can be assigned identical copies

of the predicted map.



C. Measurement Update

Like the prediction, the measurement update for the daugh-
ter process mirrors that of the standard GM-PHD filter, mod-
ified by the measurement-driven birth density. First, the birth
terms are constructed from the current measurements:

γk|k−1(m|X
(i)
k|k−1) =

Jk|k−1,b=|Zk|∑
j=1

wbN (m;µ
(j|i)
k|k−1,b;P

(j|i)
k|k−1,b) (52)

µ
(j|i)
k|k−1,b = h−1(zj ,X

(i)
k|k−1) (53)

P
(j|i)
k|k−1,b = J

(j)
k,bRJ

(j),T
k,b (54)

J
(j)
k,b =

∂

∂z
h−1(z,X)

∣∣∣∣
z=zj ,X=X

(i)

k|k−1

(55)

Here, h−1(z,X) is the inverse measurement model, relating
a measurement and vehicle position to a feature state. The
weight of birth components wb is a parameter to be specified.
The birth density is combined with the predicted PHD and a
GM-PHD update is executed as normal, except that the birth
terms have a probability of detection pD = 1.

D̃
(i)
k (m|X(i)

k−1) = (1− pD(m|X(i)
k|k−1))D̃

(i)
k|k−1(m|X

(i)
k−1)

+
∑
z∈Zk

D̃
(i)
D,k(m|X

(i)
k−1) (56)

where

D̃
(i)
D,k(m|X

(i)
k−1) =[ Jk|k−1∑

j=1

pD(µ
(j|i)
k|k−1|X

(i)
k|k−1)w

(j|i)
k N (m;µ

(j|i)
k ;P

(j|i)
k )

+

Jk|k−1,b∑
j=1

w
(j|i)
k,b N (m;µ

(j|i)
k,b ;P

(j|i)
k,b )

]/
Lz (57)

Lz = κk(z) +

Jk|k−1∑
l=1

pD(µ
(l|i)
k|k−1|X

(i)
k|k−1)w

(l|i)
k +

Jk|k−1,b∑
l=1

w
(l|i)
k,b

(58)

w
(j|i)
k = gk(z|µ(j|i)

k|k−1;X
(i)
k|k−1)w

(j|i)
k|k−1 (59)

µ
(j|i)
k = µ

(j|i)
k|k−1 −K

(j|i)
k (z− ẑ

(j|i)
k ) (60)

P
(j|i)
k = (I−K

(j|i)
k J

(j|i)
k )P

(j|i)
k|k−1 (61)

J
(j|i)
k =

∂

∂m
h(m,X)

∣∣∣∣
m=µ

(j|i)
k|k−1

,X=X
(i)

k|k−1

(62)

K
(j|i)
k = P

(j|i)
k|k−1J

(j|i)
k S

(j|i),−1
k (63)

S
j|i
k = J

(j|i)
k P

(j|i)
k|k−1J

(j|i),T
k +Rk (64)

ẑ
(j|i)
k = h(µ

(j|i)
k|k−1,X

(i)
k|k−1) (65)

Let FOVk(Xk) ∈ X be the vehicle’s sensor field of view at
time k, dependent on the current vehicle location. Assuming
a constant probability of detection pD, we have:

pD(m|X(i)
k|k−1) =

{
pD if m ∈ FOVk(X(i)

k|k−1)

0 otherwise
(66)

Consequently, for landmarks outside of the field of view, the
updated feature will be identical to the predicted one because
only the first term of (56) will be non-zero. This means that
only the features within FOVk(X

(i)
k|k−1) need to be updated,

and remaining feature estimates can be propagated forward
untouched. In order to perform the measurement update for
the parent process, we must first compute the multi-object
measurement likelihood.

LZk
(X(i)) = exp

−
Jk|k−1∑
j=1

pD(µ
(j|i)
k|k−1|X

(i)
k|k−1)w

(j|i)
k|k−1


×
∏
z∈Zk

Lz (67)

With this likelihood in hand, the weights of the Dirac mixture
can be updated:

η
(i)
k =

LZk
(X(i))∑Nk|k−1

l=1 LZk
(X(l))

η
(i)
k−1 (68)

At this point we have the updated posterior parent and
daughter PHDs. However, some steps need to be taken to
manage the computational complexity of the filter. During
the prediction for the parent, each component in the Dirac
mixture is “shotgunned” into M new components, resulting
in a new mixture containing M × Nk−1 components. Left
unchecked, the size of the parent process mixture would grow
exponentially with every time step. To curb this growth, we
prune the mixture to the Nk−1 components with the highest
weights. The Gaussian mixtures for the daughter process
also have the potential for this exponential growth, as the
measurement update generates |Z|+1 new Gaussians for each
component in the predicted mixture. Many of these come from
low-likelihood measurement associations and contribute little
to the updated PHD.

D. Forward Backward Smoother

In this section, we consider smoothing the parent process
which is approximated using a set of weighted particles.
The expression for the smoothed distribution is given by
equations (31) and (37). In smoothing the parent process,
we re-evaluate the weights of the particles according to the
backward recursion without adding additional particles.

The smoothed distribution at time k + 1 from k′ > k is
approximated by a set of Nk+1 weighted particles as

pk+1|k′(X|Z1:k′) =

Nk+1∑
i=1

w
(i)
k+1|k′δ(X−X

(i)
k+1|k′) . (69)

The updated distribution pk|k(X|Z1:k) at time k is approxi-
mated using Nk particles as

pk|k(X|Z1:k) =

Nk∑
i=1

w
(i)
k|kδ(X−X

(i)
k|k) . (70)



Then, using equations (31) and (37), the smoothed distribu-
tion at time k is given by

pk|k′(X|Z1:k′) =

Nk∑
i=1

w
(i)
k|k′δ(X−X

(i)
k|k′) (71)

where the smoothed weights are evaluated according to the
expression

w
(i)
k|k′ =

Nk+1∑
j=1

w
(j)
k+1|k′w

(i)
k|kfk+1|k(x

(j)
k+1|k′ |x

(i)
k|k)

Nk∑
l=1

w
(l)
k|kfk+1|k(x

(j)
k+1|k′ |x

(l)
k|k)

(72)

and f(·|·) represents the Markov transition density on the
parent process.

V. SIMULATED RESULTS

In this section, we demonstrate smoothing of the parent
process using the forward-backward particle smoother. Figure
1 illustrates the true trajectory followed by the vehicle as well
as the estimated path from the filter and a fixed lag smoother
(for a lag of 16 time steps). Additionally, the figure shows an
estimate of the uncertainty on the estimated landmarks from
the filter.

In this scenario, the uncertainty in the distribution on the
vehicle position grows as the vehicle traverses the path until
the loop is closed, and the uncertainty decreases at this point.
By smoothing backwards at times just prior to the loop closure,
we can achieve a significant reduction in the estimated vehicle
position.

In the experiment conducted here, the vehicle uses the
Ackerman steering motion model [36]. A set of measurements
corresponding to detected landmarks is obtained from the
sensor. The set of measurements consists of detected point
features represented by range and bearing. The odometry noise
is given by a zero mean Gaussian with standard deviation 1 m/s
for velocity and 0.1◦ for steering angle. The observation noise
for the range and bearing sensor measurements is given by a
zero mean Gaussian with standard deviation 1 m for range and
2◦ for bearing. The probability of detection of landmarks is
pD = 0.95 and an average of λ = 2 false alarms are detected
per scan.

100 particles are used to model the vehicle trajectory
and resampling is performed when the effective number of
particles reduces to 70. This allows the particle distribution
to retain a sufficient number of samples in the tails of the
distribution which is essential for the smoother.

Since we are smoothing the path only in the region just prior
to the loop closure, we illustrate the smoothing only on the
second half of the vehicle path. We apply a fixed lag smoother
with a lag of 5, 8, 12 and 16 time steps. The squared error for
the filter and fixed lag smoothers is shown in Figure 2. From
the figure, it is clear that the correction in the filter at time
t = 261 from the loop closure event propagates backwards
in the smoother and reduces the error at those corresponding
time instances.

Fig. 1. True vehicle trajectory along with estimated path from the filter and
fixed lag smoother with a lag of 16 time steps.
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Fig. 2. Reduction in uncertainty due to loop closure in the filter (t = 261)
is propagated backwards through the smoother resulting in lower error in the
smoothed vehicle position.

VI. CONCLUSIONS

This paper has developed the random finite set approach
to simultaneous localisation and mapping by introducing
forward-backward smoothing to refine the vehicle trajectory.
The results demonstrate that the technique is able to improve
the estimate of the vehicle position after closing a loop. Future
work will involve investigating smoothing the estimate of the
map and introducing moving targets.
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[36] José E. Guivant and Eduardo Mario Nebot. Optimization of the
simultaneous localization and map-building algorithm for real-time
implementation. IEEE Transactions on Robotics, 17(3):242–257, 2001.


