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SLAM (Simultaneous Localisation and Mapping) 

Objective: Jointly estimate robot pose & map

Introduction



Estimates of landmarks are correlated with each other 
because of the common error in estimated vehicle location 
[Smith, Self & Cheeseman]

SLAM requires a joint state composed of pose and every 
landmark position, to be updated following each 
landmark observation.

 Statistical basis: [Smith & Cheeseman]

 Essential theory on convergence [Csorba]

 Algorithms [Bailey & Durrant-Whyte], [Montermelo et al]

Introduction

 Key problem: Geometric uncertainty [Durrent-Whyte]



t = 0
 Initial State and Uncertainty

 Using Range Measurements

Introduction



t =1
 Predict Pose and Uncertainty to  time 1

Introduction



 Correct pose and pose uncertainty

 Predict new feature positions and their uncertainties

t =1

Introduction



 Predict pose and uncertainty of pose at time 2

 Predict feature measurements and their uncertainties

t = 2
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 Correct pose and mapped features

 Update uncertainties for mapped features

 Estimate uncertainty of new features

t = 2

Introduction
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 Traditional “Bayes” SLAM:

pk-1(Mk-1, xk-1|Z1:k-1) pk(Mk, xk|Z1:k)pk|k-1(Mk, xk|Z1:k-1)⋅⋅⋅ ⋅⋅⋅
prediction data-update 

“Bayes”-SLAM filter
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 Vector representation of map

 Performs data association

 Applies “Bayes”-SLAM filter

Introduction



Map Representation

Q:     What is the purpose of estimation?

A:      To get good estimate!

What is the type object that we’re trying to estimate?

What is a “good” estimate?

Error metric:

Quantifies how close an estimate is to the true value

Fundamental in estimation

Well-understood for localization: Euclidean distance, MSE, …

What about mapping?



Q:  Why do we need mapping error, localisation 
error alone is sufficient, since good
localization implies good mapping anyway?

A: How do we know it’s a good mapping if we 
don’t know how to quantify mapping error?

Map Representation
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Estimate is correct but estimation error                         ?

True Map Estimated Map
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Traditional feature-based SLAM: stack landmarks into a large vector!
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Map Representation
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What are the estimation errors?

Which map estimate is better?

O :  True landmarks 
+ :  Estimated landmarks

(a) (b) (c) 

Map Representation



Need the mapping error metric to 

be a metric

have meaningful interpretation

capture errors in number of landmarks and their positions

Map Representation



Metric: d(. , .)

(identity) d(x, y) = 0 iff x = y;

(symmetry) d(x, y) = d(y, x) for all x, y

(triangle inequality) d(x, y) < d(x, z) + d(z; y) for all x, y, z.

Why triangle inequality?

Suppose estimate z is “close” to the true state x. 

If estimate y is “close” to z, then y is also “close” to xx

z y

Q: Why do we need a metric?

A: Necessary for comparisons/bounds/convergence

Map Representation



Q: Why do we even care about error in the number 
of landmarks?

Catastrophic consequences in applications  such  as search & rescue, 
obstacle avoidance, UAV mission…

A:

Map Representation

Presenter
Presentation Notes
I will then present finite sets stats-a stat tool derived from RS for attacking MS MT tracking. 



Map Representation

Vector representation doesn’t admit map error metric!

Finite set representation admits map error metric, e.g.

Hausdorff, Wasserstein, OSPA 

The realization that the map is a set is found in [Durrant-Whyte]

The map is fundamentally a set (of landmarks)



What about grid-based maps? 

True Map Estimate 1 Estimate 2

Map Representation

When treated as vectors, estimates 1 and 2 have the same error, 
even though intuitively estimate 1 is better than 2 



Stochastic Geometry

Essence: Connections between Geometry and Probability

(Buffon’s needle 1777) What is the chance that a needle dropped randomly 

on a floor marked with equally spaced parallel lines crosses 1 of the lines?

Origin 18th century: geometric probability

D > L

L
2L
πD

Ans = 



Stochastic Geometry

What is the mean length of a random chord of a unit circle?

What is the chance that 3 random points in the plane form an acute triangle?

What is the mean area of the polygonal regions formed when randomly-
oriented lines are spread over the plane?

Monograph: [H. Solomon, Geometric Probability, Philadelphia, PA: 
SIAM,1978]

Other well-known Geometric Probability problems

(cf. Bertrand’s paradox)



Stochastic Geometry

Development of expected values 
associated with geometric objects 
derived from random points 

Theory of measures that are 
invariant under symmetry groups

Geometric Probability

Integral Geometry Stochastic Geometry

Focus on the random geometrical 
objects, e.g. models for random 
lines, random tessellations, 
random sets.

Study of random processes whose 
outcomes are geometrical objects 
or spatial patterns

The terms Stochastic Geometry and Geometric Probability are some 
times used interchangeably



Stochastic Geometry

Modern stochastic geometry deals with random subsets of arbitrary forms, 
even randomly generated fractals

D. Kendall (1918-2007)

Foundation (1960s-1970s): mostly due to independent work by Matheron
and Kendall, both of whom gave credits to earlier work by Choquet

G. Matheron (1930-2000) G. Choquet (1915-2006)

Applications:  physics, biology, sampling theory, 
stereology,  spatial statistics, agriculture, forestry, 
geology, epidemiology, material science, image 
analysis, telecommunications, data fusion, target 
tracking …



The number of points is random, 
The points have no ordering and are random
An RFS is a finite-set-valued random variable
AKA: (simple finite) point process or random point pattern

Pine saplings in a Finish forest 
[Kelomaki & Penttinen]

Childhood leukaemia & lymphoma in 
North Humberland [Cuzich & Edwards]

Random Finite Set: Special case of Matheron’s random closed set
Examples of point pattern data (realisations of RFS)

Stochastic Geometry



intensity measure or
1st moment measure

VΣ(S) = E[|Σ∩ S|]
E

S = expected No.  
points of Σ in S

E[|Σ∩ S|] =    vΣ(x)dx∫S

( ) 0

( ) ( )( ) lim
( ) ( )x

x

vol
x

V V dxv x
vol vol dx

Σ Σ
Σ ∆ →

∆
= =

∆

intensity function or PHD (Probability 
Hypothesis Density)

What is the expectation of a random finite set?

E
∆x

Stochastic Geometry



x0 state space

PHD of an RFS  

S

v(x)dx = expected No. points in S∫S

v(x0) = density/concentration of
expected No. points at x0

Physical interpretation of the PHD

Stochastic Geometry



intensity function (PHD)

vΣ(x) = E[δΣ(x)]

E

Engineering interpretation of the PHD as the “expected set”

Stochastic Geometry



Map = finite set of landmarks 

Bayesian SLAM requires modelling uncertainty in maps by RFS
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Robot pose
Map

Measurements
Controls

Measurement likelihood

Set integralTransition density

Bayes-SLAM prediction

Bayes-SLAM update

Set integral

RFS-SLAM 
[Mullane et. al. 08]

Bayesian SLAM



Bayes Risk: Expected posterior cost/penalty of incorrect estimate
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Optimal Bayes estimator:

Bayes risk
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set integrals

Bayesian SLAM

Joint multi-target estimator [Mahler07]: given a D
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Bayes Optimal & converges as k tends to infinity

Presenter
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I will then present finite sets stats-a stat tool derived from RS for attacking MS MT tracking. 



Using the PHD as the expected map

Bayesian SLAM

RFS-SLAM 
[Mullane et. al. 08]
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Bayesian SLAM

SLAM SMC-PHD  [Kalyan et. al. 2010]

SLAM with cluster processes [Clark et. al. 2012]

Collaborative SLAM [Moratuwage et. al. 2010, 2012]

Mapping [Lundquist et. al. 2011]

SLAM Formulation & Solutions [Mullane et. al. 2008, 2010, 2011]

Presenter
Presentation Notes
Since Individual target probability distribution models are defined on subsets of Rn
Not tractable to derive multi-target probability distribution on the abstract Borel subsets of the finite subsets of E
However, belief distribution on the closed subsets of E can be derived 
Mahler’s approach is offers a more tractable modeling alternative- Aim: for practicing engineers to write down the belief distribution using the motion models of individual targets, take set derivative to get the multi-target transition density, write down belief distribution using the sensor models, take set derivative to get the multi-target likelihood.  




Conclusion

Mapping error is of fundamental importance

The (feature) map is a finite set

Bayesian SLAM requires random finite set 

Borne out of practical & fundamental necessity

Fully integrates uncertainty in data association & landmarks  
under one umbrella.

The rest is up to you ...

Thank You!
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