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Abstract

In this article we have adapted productivity analysis to the case of a cost model using a quadratic cost function
and discrete data. The main theoretical result is a productivity index that can be decomposed into modified
versions of the contribution of technical change and the effect of the variations in the scale of production. This
framework has been applied to the study of the Spanish electric sector from 1985 to 1996, during which
relevant regulatory changes were introduced in order to increase productivity. For this, a normalized quadratic
cost function was estimated. The results show important productivity gains with both technical change and
scale effect playing important roles.
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1. Introduction

Most of the empirical work dealing with productivity measurement and technical change

using cost functions, have used the decomposition proposed by Denny, Fuss and Waverman

(1981). Such decomposition was originally applied for translog cost functions and adapted

to discrete data, but is not directly applicable to other flexible forms as the quadratic.

As the translogarithmic cost function is not defined for zero values of the right hand side

variables, the quadratic has been of help particularly when dealing with multiproduct

activities. In this case, pooled data usually contains some zero outputs for some firms at

some point in time. The quadratic cost function has been used indeed to deal with this

problem, e.g. Röller (1990), who proposed a CES quadratic function, and Pulley and

Braunstein (1992), who used a composite cost function.

On the other hand, although well defined for zero production levels, the quadratic cost

function in its simplest form (Taylor expansion of order two), does not fulfill an important

property like homogeneity of order one in factor prices. This can be imposed as constraints

on the parameters in the translog function, but it can not be imposed in the quadratic

without destroying its flexibility (Caves, Christensen and Tretheway, 1980). Normalization

(using one factor price as a numeraire dividing cost and the other factor prices)1 has been

used as a procedure to avoid this unpleasent property (see for example Halvorsen, 1991).

The objective of this article is to adapt productivity theory and technical change analysis to

the quadratic functional form and to discrete data variations. To do this, we have applied

the quadratic approximation Lemma (Diewert, 1976). Then the resulting approach is

applied to the electric sector in Spain using a normalized quadratic cost function for the

period 1985-1996. Along these years, important regulatory changes took place in the
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Spanish electric sector, and most of the analysis made indicates that there were efficiency

gains due to the reforms.

In section 2 we develop the productivity model. In section 3 the Spanish electric sector is

decribed and the econometric model is presented. The results are analyzed in section 4 and

the most important conclusions are presented in the final section.

2. The productivity model and the quadratic cost function.

Let us try to find an appropriate productivity index for the quadratic cost function. Let us

begin by decomposing a change in costs in all the different components. Consider a cost

function

C=C(w, q, t) [1]

where C is the minimum expenditure to produce output vector q at factor prices w. If C is

represented through a quadratic cost function, then the quadratic approximation lemma

(Diewert, 1976), which establishes that

[ ] )( )()(
2
1

)()( 010101 zzzfzfzfzf zz −∇+∇=−   [2]

gives an exact value for the difference between the cost function evaluated at two points.

Applying [2] to [1] for a cost change between periods t1 and  t0  one gets
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Dividing [3] into Ct0 and taking into account that i
i

x
w
C

=
∂
∂

 and that j
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m
q
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=
∂
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 are the ith

optimal factor demand and the jth marginal cost respectively, the rate at which cost changes

can be approximated as
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where the first term is the contribution of factor price changes, the second is the

contribution of product variations and the third is the consequence of a change of the cost

function itself in time.

Now we will follow Denny, Fuss and Waverman (1981), but applied to discrete changes in

variables. Let us call 
ooo
DandBA,  the three elements in equation [4]. Let us decompose the

first one as
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where si is factor i’s cost share. For short, the rate of change in cost due to variations in

factor prices have been decomposed into two terms that depend on the rate of change in

factor prices, 
o

iw , and on factor shares in both periods.

The second term in equation [4] can be transformed as
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where åC,qj is the product elasticity of cost, and 
o

jq  the rate of change in output j.

Finally, the third term can be easily manipulated to obtain
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where 
t
C

C
T

∂
∂

=
1o

is the technical change. This establishes that changes in the cost function

itself can be expresed as half the change in t0 plus half the change in t1 weighted by the cost

relation, such that a cost increase would make technical change in t1 weight more than in t0

and the contrary would happen for a cost reduction.

On the other hand, cost in t1 can be expresed as
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such that using �wi as a common factor in the last two terms and converting into rates
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where 
o

ix  is the rate of change of factor i. Analogously, from [8] and using �xi as a

common factor between the second and fourth term, one gets
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Adding [10] and [11]
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Solving for -D in [4], and using [6] and [12] one obtains
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where the second term in the right hand side is an index of factor change between t1 and t0,

which we will call 
o
I . Let us define 

o
M as an index of product change between periods t1

and t0 , namely
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Introducing [14] into [13], adding and substracting 
o
M one gets












−++−=− ∑

=
1)(

2
1

01 ,
1

,
10

01
jj qC

m

j
qC

jt

jt

qC

qC
MIMD εε
oooo

   [15]

Finally, define 
ooo
IMP −=  as the difference between the product and factor indices

previously defined, such that 
o
P  represents the productivity index adapted to the quadratic

form and discrete changes in the cost function variables, i.e.
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If radial (proportional) variations of the product vector are considered and the technology

exhibits constant returns to scale, then the expression in parenthesis vanish, in which case

the productivity index coincides with the index of technical change. Under increasing

(decreasing) returns the productivity index is larger (smaller) than the index of technical

change (for radial variations of products). These results are equivalent to those derived by

Denny, Fuss and Waverman (1981).

3. An application to the Spanish electric sector.

In this section we will apply the theoretical development presented above to the Spanish

electric sector for the period 1985-1996, when Spain experienced an interesting regulation

change, going from a traditional cost plus regulation to a system based upon incentives to
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productivity. In the following section we will review the structure and regulation of the

Spanish electric sector. Later on we present the estimation of a multiproduct cost function

adapted to the special characteristics of the representative Spanish firm along this period.

3.1.- Structure and regulation of the Spanish electric sector during the period 1985-

1996

Until 1996, the Spanish electric sector worked as an integrated system2. In the short run,

both the transmission phase and dispatching were in the hands of an independent entity

called Red Eléctrica de España (Spanish Electric Network, SEN). In the long run,

generation needs were globally defined through the National Energy Plans. Distribution

was mostly managed by large firms, vertically integrated with generation, which were

assigned exclusive responsibility on specific geographical zones. The particular feature of

the Spanish electric sector in the period 1985-1996 has been that transmission is

independent of both generation and distribution phases.

The LSF was designed from 1983 to 1987, and begun to be applied since January 19883.

Although the whole mechanism was rather complex, the basic idea behind the LSF was as

follows. A firm involved in generation and/or distribution of electricity would receive a

payment equal to its standard costs. The standard costs correspond to a valuation procedure

(common to all firms) of fixed and variable costs of generation and distribution including

an adequate retribution of capital investment.

According to the LSF methodology, revenues should cover system wide costs and a single

tariff holds for the whole territory. On the other hand, the firms present different equipment

and different market structures that translate into different distribution expenses and

different revenue per kwh sold. As actual revenue does not correspond to actual sales to
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customers but to the calculated standard costs, a crossed-firms compensation system is

needed in order to balance the financial result of each firm. The basic elements of the LSF

methodology can be summarized as follows (Rodríguez and Castro, 1994):

a) The central administration determines the standard cost SC for each firm according to

equipment (generation) and distribution structure.

b) Each firm produces according to its (unified) plan incurring a cost C and receiving a

revenue R, making a nominal net revenue NR=R-C.

c) Each firm receives a compensation (T) equal to the difference between SC and R. (pays

if negative): T = SC-R.

d) Thus, the actual net revenue of each firm happens to be ANR = NR+T = SC-C

This form of regulation pushes each firm towards the maximization of the difference

between the standard and the real costs. It favors cost efficiency in production at a firm

level, because this works towards increasing firm specific profits. The LSF has been

labeled as a case of yardstick competition in which the price of the regulated firm is set as a

function of the average cost of the remaining firms. Rodríguez and Castro (1994) consider

that setting the level of the standard cost is an ad hoc procedure that evolves through an

explicit price index. Thus, the standard cost should be interpreted as a price cap that is

periodically updated independently of the evolution of average efficiency in the sector.

Different authors agree that the LSF has produced the appropriate incentives for cost

reduction, although some point out possible shortcomings as well. Kühn and Regibeau

(1998) praise the approach but also identify a series of elements that could have produced

unwanted firm behavior. First, cost reduction incentives are not applied equally to all type
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of costs. Second, actual profits, i.e. the difference between SC and C, could be enlarged

through direct negotiation between the government and the firms.

Crampes and Laffont (1995) analyzed the effect of the reward system built within the LSF

on efficient behavior of firms, using the framework of incentive theory. For them, LSF

regulation mimics a system of yardstick competition where the standard cost is the

reference once it is taken by each firm as exogenous, at least in the short run. The

compensation mechanism together with some correction elements induces efficiency

although some factors related with the LSF could produce certain bias in investment

decisions.

On the other hand, using non-parametric techniques Arocena and Rodríguez (1998) found

productivity improvements in thermal coal plants in the period 1988-1995. According to

their results, annual productivity increased in average by 3,2% during the period, mostly

explained by management improvements that increased efficiency, a direct effect of the

LSF according to the authors.

3.2 The Normalized Quadratic Cost Function

In this work we will use a normalized quadratic cost function (NCQF), which is a well-

defined flexible functional form that permits zero values for the right hand side variables. It

is flexible because no restrictions are imposed on the sign nor values of the first and second

derivatives. Thus, data is allowed to show freely the relations between factors and/or

between products. As known, the cost function should be homogeneous of degree one in

factor prices, monotonic in factor prices and in products, and concave in factor prices. The

first property is imposed by simply normalizing total cost and all factor prices by one factor
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price. Both monotonicity and concavity should be verified through the Jacobian and the

Hessian of the estimated function.

If the normalizing factor is the price of input n, the NCQF can be written as
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where C is the normalized cost, m is the number of products, n is the number of factors, wi

are the normalized factor prices, qj are product quantities, t is a time trend, Di are the firm

specific dummies, ωi are the firm specific effects and N is the number of firms. The time

trend captures how the cost function changes over time, from which technical change can

be detected and quantified. This variable has been crossed with both factor prices and

products, such that non-neutral technical change and the contribution by product and phase

can be detected as well.

The firm specific effects are designed to capture the differences among firms that are not

explained by the rest of the variables. Although the model assumes that all firms have

access to the same technology, they operate with different cost levels. In other words, ωi

permits a correction at the origin. This means that the error term can be looked at as

itiitU εω +=

where Uit is the sum of a firm specific term ωi that captures non-observed heterogeneity at a

firm level including individual inefficiency, and a purely random term εit.

Factor demands can be obtained from [17] applying Shephard’s Lemma, i.e.
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Equations [18] add no additional parameters and increases significantly the degrees of

freedom of the econometric model by including new information (factor demands). This is

why the joint estimation of equations [17] and [18] make the parameter estimates more

efficient.

From the estimated cost function, all the information necessary to calculate the scale effect

of production on productivity, namely the cost-product elasticities and the estimated costs.

Furthermore, to obtain the technical change index presented in [7] the derivative of C with

respect to t is needed, which is

∑∑
==

+++=
∂
∂ m

j
jj

n

i
ii qwt

t
C

11

λµπϕ                   [19]

Note that ìi is the derivative of xi with respect to t, which means that the demand for input i

changes in time at a constant rate ìi, independently of the rest of the variables (a purely

technical effect). Analogously, ëj is the derivative of product j marginal cost with respect to

time, and has a similar interpretation.

Dividing into C, this procedure results in the decomposition of technical change into three

terms (Baltagi and Griffin, 1988).

Effect due to pure technical change: )2(
1

t
C

πϕ+

Effects due to non-neutral technical change: ∑
n

i
iiw

C
µ

1
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Effects due to scale-augmenting technical change: ∑
m

i
iiq

C
λ

1

We will use this decomposition in the empirical analysis presented in the next section

3.3 The variables and Data

Equation (17) is intended to explain the economic cost of generation and distribution. Total

costs are the sum of all expenses with the exception of purchased power (1996 millions

pesetas). Distribution costs represent only those derived from energy transmission

(circulation) and network maintenance as well as those associated with final delivery to

customers, which are all independent on the origin of the energy (self generated or

acquired). This is the reason why we did not consider the expenses on purchased power in

total costs. Accordingly, its price was not included in the right hand side4. Firms use fuel5,

labor, capital and intermediate inputs. Appendix 1 contains factor prices calculation.

We distinguish four generation products, namely thermal coal (gtc), thermal fuel (gtf),

hydroelectric (gh), and nuclear (gn), as well as one distribution output. The gigawatt-hour

unit (million kilowatt-hour) was used for all products in the model. Thus, the product

vector is

Q = (gtc, gtf, gh, gn, di)

The unit of observation is a firm a given year, not a plant as both cost minimization and the

regulatory incentives are firm oriented. Since we have specified a multiproduct technology,

we do not required to limit the sample according technical similarity. We gathered a data

pool of twelve firms observed annually during the period 1985 to 1996, i.e. during the LSF

period. The precise information was obtained directly from the yearbooks (memorias) of
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the firms. As not all years were available for all firms, the pool is unbalanced and contains

106 observations. All important Spanish firms were included with the exception of

ENDESA, as their data included mining activities mixed with electric generation.

Firms considered are: Unión Eléctrica Fenosa (FENOSA), Compañía Sevillana de

Electricidad (SEVILLANA), Fuerzas Eléctricas de Cataluña (FECSA), Empresa Nacional

Hidroeléctrica del Ribagorzana (ENHER), Hicroeléctrica del Cantábrico (HC), Electra de

Viesgo (VIESGO), Hidroeléctrica de Cataluña (HEC), Eléctricas Reunidas de Zaragoza

(ERZ), Empresa Nacional de Córdoba (ENECO) (which is the only one that just generates),

IBERDUERO, and Hidroeléctrica Española (HE). These two last ones merged by 1992 to

create IBERDROLA. Altogether, these firms represent 81% of energy consumption and

nearly 50% of electricity production in Spain. It is relevant to note that three firms produce

only one type of generation product and that five of them produce all four generation types.

Appendix 2 contains two tables summarizing costs and production of all firms.

3.4 Results

We have estimated the system of equations (17) and (18) with the variables deviated with

respect to the sample mean, which permits an immediate interpretation of the parameters.

The price of labor was used as the normalizing factor. The system was estimated using

Zellner’s (1962) seemingly unrelated regression procedure applied to the data described

above. In order to estimate the system, one of the firm specific dummies had to be

eliminated to avoid multicolinearity. The chosen firm was ENECO. Results are presented in

Appendix 3.

The estimated cost function is homogeneous of degree one by construction. Monotonicity

in factor prices and products was verified for 99% of the observations. The Hessian shows
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that the function is concave in factor prices. Thus, the estimated cost function fulfills all

conditions and can be taken as a good representation of the (dual) underlying technology.

The coefficients in general are intuitively appealing in terms of sign and value of those with

immediate meaning. The independent term (C1) plus the average of the dummies (C49 to

C59) yields a value very close to the average of the normalized cost, as expected.

Normalized marginal costs at the mean (parameters C2 to C6) are all positive and have

appealing relative magnitudes. Parameters βi (C7 to C9) replicate factor demands at the

mean. The first order time trend is negative (C10), which means that costs diminish with

time, everything else being constant. The positive sign of the second order term (C48)

shows that this effect is decreasing. There are no firms with a statistically significant

specific effect less than zero, which means that no firm operates below the cost of the base

firm ENECO for the same level of the rest of the variables. Although not all of the cost

excess can be associated with inefficiency, permanent inefficiency within the period is

indeed part of the cause of a significant positive value. This is the case for ENHER, ERZ,

HEC, and VIESGO. Those firms whose specific effect is not significant have the same

costs as the one used for reference (FECSA, FENOSA, HC, HE, IBERDUERO,

IBERDROLA and SEVILLANA).

4. Productivity analysis.

As shown in equation [16] the rate of change of productivity can be separated into the

evolution of technical change and the effect of the change of production levels when

economies of scale are not constant. To obtain these we need the estimated cost and the

cost product elasticities. Table 1 contains the results evaluated at each annual mean and at

the mean of the whole period.
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Table 1. Cost-product  elasticities and economies of scale

YEAR COAL FUEL HIDROEL NUCLEAR DISTRIB S

1985 0.31 0.009 0.08 0.04 0.31 1.33

1986 0.31 0.002 0.04 0.05 0.37 1.28

1987 0.29 0.008 0.07 0.11 0.29 1.32

1988 0.21 0.015 0.16 0.26 0.13 1.29

1989 0.26 0.019 0.05 0.21 0.30 1.18

1990 0.33 0.017 0.04 0.13 0.31 1.21

1991 0.33 0.041 0.06 0.14 0.27 1.19

1992 0.28 0.101 0.08 0.21 0.26 1.07

1993 0.29 0.036 0.08 0.18 0.38 1.03

1994 0.30 0.033 0.10 0.17 0.37 1.02

1995 0.31 0.076 0.09 0.16 0.35 1.01

1996 0.27 0.030 0.22 0.22 0.19 1.08

AVERAGE 0.28 0.035 0.10 0.18 0.29 1.13

The largest elasticities within the generation phase are for coal and nuclear, but the

distribution product exhibits an even larger elasticity. The multiproduct degree of

economies of scale indicates decreasing average radial costs, getting close to constant by

the end of the period.

In table 2 we present the estimated variations of the productivity index together with its

decomposition into the technical change index and the economies of scale term in equation

[16]. In global terms, the productivity index has increased annually by 5,3% in average,

with 2,4% corresponding to the technical change index and the rest to the scale effect. The

technical change index is quite stable during the period, varying from figures around 3%

during the first seven years to 2% in the last four. The scale effect shows larger variability

depending on production, as the industry faces increasing returns during the whole period.
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Thus, the most important scale effects occur within the period 1989-1992, and the effect is

negative from 1993 on as the production index decreases.

Table 2. Rate of variation of productivity, technical change and scale effect.

86/85 87/86 88/87 89/88 90/89 91/90 92/91 93/92 94/93 95/94 96/95

TCI 2.926 3.143 2.984 2.822 2.976 3.255 2.647 2.052 2.358 2.308 1.998

SEI 0.906 0.655 2.874 11.812 2.750 4.887 5.66 -3.41 -1.081 7.405 -1.711

PI 3.83 3.80 5.86 14.63 5.73 8.14 8.31 -1.36 1.27 9.71 0.29

TCI: Technical Change Index. SEI: Scale Effect Index. PI: Productivity Index

In order to further analyze the technical change, it is convenient to decompose it taking

advantage of the richness of the estimated cost function, which is what we do next.

Table 3. Decomposition of technical change

YEAR TCI PURE TCI SCALE
AUGMENTING

NON NEUTRAL
EFFECT

86/85 2.926 3.61 -0.62 -0.06

87/86 3.143 3.53 -0.3 -0.08

88/87 2.984 3.69 -0.61 -0.09

89/88 2.822 3.10 -0.21 -0.06

90/89 2.976 2.84 0.17 -0.03

91/90 3.255 3.29 -0.05 0.01

92/91 2.647 3.00 -0.40 0.06

93/92 2.052 1.98 0.04 0.03

94/93 2.358 1.71 0.58 0.06

95/94 2.308 1.69 0.54 0.08

96/95 1.998 1.64 0.31 0.05

AVERAGE 2,67 2.73 -0.05 -0.003

The results show that most of the technical change is a pure effect, while the non-neutral is

practically negligible and the scale augmenting effect has some relevance. Pure technical

change represents better use of resources that can not be associated with inputs nor

products. The decomposition in table 3 permits a quantitative investigation of the causes
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behind the relatively stable contribution of technical change. During the first four years the

non-neutral and the scale augmenting effects are negative while in the last four years both

contribute to productivity improvements. On the other hand, pure technical change during

the first period practically doubles that during the last period, which results in a relatively

smooth overall effect. Note that the scale augmenting effect explains up to 25% of the total

technical change (period 93-94), with fuel generation and distribution having the largest

contribution. During the first years, fuel generation adds positively (and significantly) while

distribution shows a negative effect at the beginning and a positive one by the end of the

period. From 1992 on, coal generation has a positive contribution to technical change.

It is worth noting that the overall results obtained here, are similar to those obtained by

Arozena and Rodríguez (1998). However, the analysis behind the aggregate figures is

richer in our case, as the whole range of production has been specified, including

distribution.

5. Conclusions

In this article we have adapted productivity analysis to the case of a cost model using a

(normalized) quadratic cost function and discrete data. The main theoretical result is a

productivity index that can be decomposed into modified versions of the contribution of

technical change and the effect of the change in the scale of production. Qualitatively, these

are similar to the results obtained with the translog functional form.

This framework has been applied to the Spanish electric sector along the period 1985-1996,

during which relevant regulatory changes were introduced in order to increase productivity.

A normalized quadratic cost function was estimated, and the results show an average

annual productivity improvement of 5,3%, where 45% corresponds to technical change and
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55% to the scale effect. The decomposition of technical change shows that the pure

technical effect is the most relevant, while the scale augmenting effect is relatively

important during some years only; the non-neutral effect is practically negligible. Further

decomposition of the scale augmenting effect shows that fuel generation and distribution

were the products that contributed the most to technical change. These results confirm

important productivity gains during the period 1985-96. In agreement with the opinion of

all authors cited here that have studied the Spanish electric sector, this can be attributed to

the incentives provoked by the LSF.
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Notes.

1. The normalization of quadratic functions has been also applied to profit functions as proposed by Lau
(1976) and most recently applied by Bhattacharyya and Glover (1993).

2. For an exhaustive description and analysis of this period see Ramos, Martínez-Budría and Jara-Díaz
(2002).

3. Although the LSF was officially approved on January 1988, the compensation system designed to induce
efficiency incentives was applied since 1983.

4. This procedure was first introduced by Gilsdorf (1994, 1995) who claimed that acquiring energy constitutes
just a transfer between whoever generated and the consumer. The cost function without purchased power
would be incorrectly specified if there had been an incentive to generate as a consequence of double
marginalization. We believe that this was not the case during the LSF period because increasing power
capacity was already strictly regulated before this period. In addition, we have to point out the following facts.
First, the ratio between distribution and generation (D/G) increased by 6.5% for all firms . Second, the
utilization of a particular type of installed power was not an arbitrary decision by the firm, as it was done
according to a strict merit order governed by variable cost, preventing strategic behavior regarding the
generation variable. Third, the correlation between D/G and time was less than 0.02 in absolute value.
Therefore, we conclude that either regulation prevented double marginalization and/or there was no
simultaneous incentive to generate and distribute.

5. The derived demand for fuel deserved a special treatment. First, fuel consumption depends only on the
amount of coal and fuel generation (thermal). Thus, fuel price has not been crossed with the other products.
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Second, the required amount of fuel depends only on the technical relation it has with thermal generation,
which means that it can not be substituted and, therefore, other factor prices do not explain fuel demand
either. Thus, fuel price was not crossed with other prices. Lastly, as thermal generation is imposed by central
dispatching rules, fuel price affects production costs but do not influence the amount of fuel to be used. As a
conclusion, fuel consumption depends only on the amount of coal and fuel generation and time. For short,

),,(** tgtfgtcXX CC =  and fuel price has to be crossed with this variables only by virtue of Shephard’s

lemma. This holds only for this factor price.
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Appendix 1. Factor Prices

As factors are in fact aggregates (capital, labor, fuel and intermediate input), we have to

construct indices for factor prices, which requires the corresponding expenditures and a proxy

measure for each factor. Thus, the calculation of a single labor price (pl) index is

straightforward and units are million annual pesetas per worker. We use a fuel price (pc)

variable obtained from the cost of an equivalent ton of coal that represents the cost of fossils

fuels, obtaining (103 pts/ton). We do not consider the fuel factor in the case of nuclear energy.

The annual consumption of uranium is included as depreciation for the same year (i.e. part of

the cost of capital).

An index for the price of capital for each firm was obtained as

p
A r FP

IMNE
kt

t t t

t
=

+ *

where pkt is the price of capital in year t, At  is the amortization in year t, rt is the average rate

of return in the electric sector in year t, FPt is stockholders’ equity in year t and IMNEt are the

net tangible fixed assets used during year t. The price of capital thus defined is a relative rate

that takes into account the depreciation charges of each year and the return on own funds as a

proxy of capital expenditures. We use as the measure of capital the net tangible fixed assets

currently used. We use as the return on own funds (rt) the average financial returns (net profit

before taxes/own funds before taxes) of the firms which are members of UNESA.

Expenditures in intermediate inputs are related with operating expenses, excluding labor costs

and procurements (purchased power and fuel). It is a quite heterogeneous aggregate that is

very much short run oriented. Therefore, to obtain a price index (pi), the corresponding

expenses were divided into net revenues, subtracting those from purchased power.
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Appendix 2

Table A.2.1. MEAN PRODUCTION BY FIRM IN THE PERIOD 1985-1996 (million kwh).

G. Coal G. fuel G. hyd. G. nuc. G. total DIST. G+D G/D

Average 2706 197 2176 3160 8239 11350 19589 0.72

Variation coef 1.16 2.35 1.48 1.69 1.16 1.05 --- ---

ENECO 2042 0 0 0 2042 0 2042 ---

ENHER 0 0 2296 0 2296 8572 10868 0.27

ERZ 0 0 503 0 503 3745 4248 0.13

FECSA 710 328 1033 6633 8704 11630 20334 0.75

FENOSA 9178 273 3540 4621 17613 18867 36480 0.93

H.C. 5188 0 641 529 6358 5481 11839 1.16

H.E. 0 585 4111 13439 18135 21887 40022 0.83

H.E.C. 0 0 535 702 1237 3548 4785 0.35

IBERDUERO 2625 133 9636 4264 16658 22607 39264 0.74

IBERDROLA 5483 1163 11035 22813 40494 53753 94248 0.75

SEVILLANA 4777 865 429 4876 10948 18472 29419 0.59

VIESGO 957 0 624 0 1581 3109 4690 0.51

Source: firm released data.

Table A.2.2. MEAN EXPENDITURE AND INPUT PRICES BY FIRM IN THE PERIOD 1985-1996.

Total C Labor Fuel Int.Inp Cap.     MK P. Labor P.Cap. P. fuel P. I.I.

Millions pesetas 1996 pts/ kg
Average 107717 24963 17099 18588 47067 459886 7.28 0.12 8.28 0.148

Variat. Coef. 1.07 1.09 1.15 1.22 1.17 1.11 0.12 0.47 1.04 0.29

ENECO 19625 1469 11988 1200 4967 21446 6.46 0.254 8.06 0.054

ENHER 52097 16005 0 12930 23162 227436 7.68 0.107 --- 0.193

ERZ 19863 7050 0 4905 7908 71233 6.70 0.11 --- 0.201

FECSA 117829 27779 7219 18947 63883 708167 7.61 0.093 8.10 0.141

FENOSA 213259 43689 57790 29970 81810 975772 7.68 0.087 8.57 0.134

H.C. 66199 8393 30569 7943 19294 211605 7.57 0.092 8.57 0.159

H.E. 229728 51072 5871 43975 128810 1279873 7.70 0.101 7.79 0.146

H.E.C 27299 8479 0 4619 14202 140967 7.79 0.101 --- 0.139

IBERDUERO 209836 56958 18983 38318 95577 1004093 7.95 0.094 9.15 0.146

IBERDROLA 501024 119234 37369 103601 240820 2023161 7.94 0.119 7.94 0.155

SEVILLANA 151195 37176 27204 23976 62839 434135 6.25 0.146 7.97 0.125

VIESGO 27102 6683 5722 4281 10417 92513 6.51 0.113 7.97 0.167

MK: capital measure.
Source: firm released data.
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Appendix 3. ESTIMATION RESULTS

VARIABLE PARAMETER VALUE T-STUDENT.
Constant α (C1) 12192.2 8.03
Gtc α gtc (C2) 1.598 9.90
 Gtf α gtf (C3) 2.702 4.42
 Gh α gh (C4) 0.666 4.89
 Gn α gn (C5) 0.858 5.67
 Di α di (C6) 0.384 3.52
 Wc β Wc (C7) 279.48 60.35
 Wi β Wi (C8) 17091.5 73.17
 Wk β Wk (C9) 61516.3 35.97
 T ϕ T (C10) -384.72 -7.48
 Gtc-gtc δ gtc-gtc  (C11) -0.109 E-3 -5.42
 Gtc-gtf δ gtc-gtf  (C12) 0.146 E-3 1.57
 Gtc-gh δ gtc-gh  (C13) 0.149 E-4 0.48
 Gtc-gn δ gtc-gn  (C14) -0.236 E-4 -0.84
 Gtc-di δ gtc-da  (C15) 0.375 E-4 2.47
 Gtc-Wc ρ gtc-Wc (C16) 0.0919 58.33
 Gtc-Wi ρ gtc-Wi  (C17) 0.315 3.12
 Gtc-Wk ρ gtc-Wk (C18) 4.228 6.237
 Gtc-T λ gtc-T (C19) -0.013 -1.82
 Gtf-gtf δ gtf-gtf (C20) 0.180 E-3 0.31
 Gtf-gh δ gtf-gh (C21) 0.868 3.07
 Gtf-gn δ gtf-gn (C22) 0.316 1.77
 Gtf-Di δ gtf-Di (C23) -0.302 -2.25
 Gtf-Wc ρ gtf-Wc (C24) 0.086 8.06
 Gtf-Wi ρ gtf-Wi (C25) 2.458 2.96
 Gtf-Wk ρ gtf-Wk (C26) 15.31 2.58
 Gtf-T λ gtf-T (C27) 0.392 2.28
 Gh-gh δ gh-gh (C28) 0.101E-3 3.75
 Gh-gn δ gh-gn (C29) 0.152E-3 3.99
 Gh-Di δ gh-Wi (C30) -0.132E-3 -3.94
 Gh-Wi ρ gh-Wi (C31) 0.300 1.72
 Gh-Wk ρ gh-Wk (C32) 6.158 5.20
 Gh-T λ gh-T (C33) 0.070 2.84
 Gn-gn δ gn-gn (C34) 0.865 2.85
Gn-Di δ gn-di (C35) -0.103 -3.24
Gn-Wi ρ gn-Wi (C36) 0.674 5.08
Gn-Wk ρ gn-Wk (C37) 7.104 8.10
 Gn-T λ gn-T (C38) -0.134E-2 -0.84
 Di-Di δ Di-Di (C39) 0.382 3.22
 Di-Wi ρ Di-Wi (C40) 1.174 11.97
 Di-Wk ρ Di-Wk (C41) 0 -
 Di-T λ Di-T (C42) -0.032 -3.74
 Wc-T µ Wc-T (C43) -7.764 -5.41
 Wi-Wi γ Wi-Wi (C44) -53611.4 -3.06
 Wi-Wk γ Wi-Wk (C45) 80307.3 3.24
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 Wi-T µ Wi-T (C46) -563.23 -7.01
 Wk-T µ Wk-T (C47) -3193.4 -5.64
 T-T π T-T (C48) 12.282 2.65
Dummy enh ω enh (C49) 3656 2.84
Dummy erz ω erz (C50) 2425 3.17
Dummy fec ω fec (C51) 3402 1.67
Dummy fen ω fen (C52) 2342 1.11
Dummy hc ω hc (C53) 604 0.65
Dummy he ω he (C54) 3554 0.77
Dummy hec ω hec (C55) 2584 3.54
Dummy ibo ω ibo (C56) 4960 1.74
Dummy iba ω iba (C57) 4748 0.60
Dummy sev ω sev (C58) 2840 1.35
Dummy vi ω vi (C59) 1931 3.38

EQUATION 1. COST FUNCTION

Average C: 14,400 R squared: 0.995 Corrected R.squared: 0.983

EQUATION 2. FUEL

Average XF:   279.11 R squared: 0.975 Corrected R.squared: 0.969

EQUATION 3. INTERMEDIATE INPUT

Average XII: 17,063 R squared: 0.984 Corrected R.squared: 0.978

EQUATION 4. CAPITAL

Average XK: 61267.2 R squared: 0.927 Corrected R.squared: 0.916


